Log in

Design and Positioning Control of a Flexure-Based Nano-positioning Stage Driven by Halbach Array Voice Coil Actuator

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A long-stroke nano-positioning stage driven by voice coil actuator (VCA) and supported by flexure guide is designed in this paper. The Halbach permanent magnet array is implemented in the VCA to improve the air-gap flux density with the magnetic concentration effect. The air-gap magnetic field is modeled with an equivalent magnetic structure and verified by finite element analysis. The proposed equivalent magnetic structure reduces the number of boundary condition equations and hence simplifies the analysis procedure. Besides, a novel spring-dam** tuning method is proposed based on the equivalent dynamic model of the closed-loop system. This tuning method regards P control and D control as a virtual spring and a virtual damper. The controller parameters are tuned in an intuitive way. Experimental results show that the positioning stage is capable of achieving a resolution of 40 nm within a stroke of 0.8 mm with high repeatability. The spring-dam** tuning method ensures better control performance compared to Ziegler Nichols (Z–N) tuning method where overshoot and settling time are decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maroufi, M., Fowler, A. G., & Moheimani, S. O. R. (2017). Mems for nanopositioning: Design and applications. Journal of Microelectromechanical Systems, 26(3), 469–500. https://doi.org/10.1109/jmems.2017.2687861

    Article  Google Scholar 

  2. Jung, J.-K., Youm, W.-S., & Park, K.-H. (2019). Vibration reduction control of a voice coil motor (VCM) nano scanner. International Journal of Precision Engineering and Manufacturing, 10(3), 167–170. https://doi.org/10.1007/s12541-009-0063-7.

    Article  Google Scholar 

  3. Teo, T. .J., Yang, G. .L., & Chen, I. .M. (2004). A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: Part I. Modeling and analyses. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 38(4), 861–871. https://doi.org/10.1016/j.precisioneng.2014.05.003.

    Article  Google Scholar 

  4. Liu, Y., & Xu, Q. (2015). Design of a flexure-based auto-focusing device for a microscope. International Journal of Precision Engineering and Manufacturing, 16(11), 2271–2279. https://doi.org/10.1007/s12541-015-0292-x

    Article  Google Scholar 

  5. Zhang, X., & Xu, Q. (2018). Design and testing of a new 3-DOF spatial flexure parallel micropositioning stage. International Journal of Precision Engineering and Manufacturing, 19(1), 109–118. https://doi.org/10.1007/s12541-018-0013-3.

    Article  Google Scholar 

  6. Li, Y., **ao, S., **, L., & Wu, Z. (2014). Design, modeling, control and experiment for a 2-DOF compliant micro-motion stage. International Journal of Precision Engineering and Manufacturing, 15(4), 735–744. https://doi.org/10.1007/s12541-014-0394-x.

    Article  Google Scholar 

  7. Xu, Q. S., & Li, Y. M. (2011). Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mechanism and Machine Theory, 46(2), 183–200. https://doi.org/10.1016/j.mechmachtheory.2010.09.007

    Article  MATH  Google Scholar 

  8. Awtar, S., & Parmar, G. (2013). Design of a large range xy nanopositioning system. Journal of Mechanisms and Robotics-Transactions of the ASME. https://doi.org/10.1115/1.4023874.

    Article  Google Scholar 

  9. Ito, S., Troppmair, S., Lindner, B., Cigarini, F., & Schitter, G. (2019). Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency. IEEE Transactions on Industrial Electronics, 66(4), 3051–3059. https://doi.org/10.1109/Tie.2018.2842735

    Article  Google Scholar 

  10. Wan, S. C., & Xu, Q. S. (2016). Design and analysis of a new compliant xy micropositioning stage based on roberts mechanism. Mechanism and Machine Theory, 95, 125–139. https://doi.org/10.1016/j.mechmachtheory.2015.09.003

    Article  Google Scholar 

  11. Shan, Y. F., & Leang, K. K. (2012). Accounting for hysteresis in repetitive control design: Nanopositioning example. Automatica, 48(8), 1751–1758. https://doi.org/10.1016/j.automatica.2012.05.055

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, H., & Li, Y. M. (2014). Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode. IEEE Transactions on Industrial Electronics, 61(3), 1475–1492. https://doi.org/10.1109/Tie.2013.2258305

    Article  Google Scholar 

  13. Wang, R. Z., & Zhang, X. M. (2018). Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system. IEEE Transactions on Industrial Electronics, 65(3), 2388–2397. https://doi.org/10.1109/Tie.2017.2736502.

    Article  Google Scholar 

  14. Hiemstra, D. B., Parmar, G., & Awtar, S. (2014). Performance tradeoffs posed by moving magnet actuators in flexure-based nanopositioning. IEEE-ASME Transactions on Mechatronics, 19(1), 201–212. https://doi.org/10.1109/Tmech.2012.2226738.

    Article  Google Scholar 

  15. Zhu, H. Y., Teo, T. J., & Pang, C. K. (2018). Analytical model-based multiphysics optimization of a nanopositioning electromagnetic actuator. IEEE Transactions on Industrial Electronics, 65(1), 478–487. https://doi.org/10.1109/Tie.2017.2714132.

    Article  Google Scholar 

  16. Teo, T. J., Bui, V. P., Yang, G. L., & Chen, I. M. (2015). Millimeters-stroke nanopositioning actuator with high positioning and thermal stability. IEEE-ASME Transactions on Mechatronics, 20(6), 2813–2823. https://doi.org/10.1109/Tmech.2015.2417776.

    Article  Google Scholar 

  17. Teo, T. J., Yang, G. L., & Chen, I. M. (2015). A flexure-based electromagnetic nanopositioning actuator with predictable and re-configurable open-loop positioning resolution. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 40, 249–260. https://doi.org/10.1016/j.precisioneng.2014.12.006

    Article  Google Scholar 

  18. Meessen, K. J., Paulides, J. J. H., & Lomonova, E. A. (2011). Analysis of 3-D effects in segmented cylindrical quasi-Halbach magnet arrays. IEEE Transactions on Magnetics, 47(4), 727–733. https://doi.org/10.1109/Tmag.2010.2101079.

    Article  Google Scholar 

  19. Lu, S.-S., & Yan, P. (2017). A stiffness modeling approach for multi-leaf spring mechanism supporting coupling error analysis of nano-stages. International Journal of Precision Engineering and Manufacturing, 18(6), 863–870. https://doi.org/10.1007/s12541-017-0102-8

    Article  Google Scholar 

  20. Zhu, H. Y., Teo, T. J., & Pang, C. K. (2017). Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D Halbach arrays. IEEE Transactions on Industrial Electronics, 64(1), 440–450. https://doi.org/10.1109/Tie.2016.2598811.

    Article  Google Scholar 

  21. Ling, J., Feng, Z., Ming, M., & ** controller design for nanopositioners: A hybrid reference model matching and virtual reference feedback tuning approach. International Journal of Precision Engineering and Manufacturing, 19(1), 13–22. https://doi.org/10.1007/s12541-018-0002-6

    Article  Google Scholar 

  22. Nguyen, V. B., & Morris, A. S. (2007). Genetic algorithm tuned fuzzy logic controller for a robot arm with two-link flexibility and two-joint elasticity. Journal of Intelligent and Robotic Systems, 49(1), 3–18. https://doi.org/10.1007/s10846-006-9097-6

    Article  Google Scholar 

  23. Yu, H.-C., Chen, T.-C., & Liu, C.-S. (2014). Adaptive fuzzy logic proportional-integral-derivative control for a miniature autofocus voice coil motor actuator with retaining force. IEEE Transactions on Magnetics, 50(11), 1–4. https://doi.org/10.1109/tmag.2014.2323423

    Article  Google Scholar 

  24. Zhu, Z. Q., Wu, L. J., & **a, Z. P. (2010). An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines. IEEE Transactions on Magnetics, 46(4), 1100–1115. https://doi.org/10.1109/Tmag.2009.2038153.

    Article  Google Scholar 

  25. Huang, X. L., Zhang, C., Chen, J. H., & Yang, G. L. (2019). Modeling of a Halbach array voice coil actuator via Fourier analysis based on equivalent structure. IEEE Transactions on Magnetics, 55(8), 1–6. https://doi.org/10.1109/Tmag.2019.2910780.

    Article  Google Scholar 

  26. Bazaei, A., Maroufi, M., Fowler, A. G., & Moheimani, S. O. R. (2016). Internal model control for spiral trajectory tracking with MEMS AFM scanners. IEEE Transactions on Control Systems Technology, 24(5), 1717–1728. https://doi.org/10.1109/Tcst.2015.2508979.

    Article  Google Scholar 

  27. Bazaei, A., Yong, Y. K., & Moheimani, S. O. R. (2017). Combining spiral scanning and internal model control for sequential AFM imaging at video rate. IEEE-ASME Transactions on Mechatronics, 22(1), 371–380. https://doi.org/10.1109/Tmech.2016.2574892.

    Article  Google Scholar 

  28. Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control System Design. Prentice-Hall.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1609206, 51807194 and 51905523, in part by the Science, Technology and Innovation Commission of Shenzhen Municipality under Grant JSGG20201103153805015, in part by the Ningbo Municipal Bureau of Science and Technology under Grant 2018B10058, 2018B10068 and 2018B10069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**aolu Huang, Miao Yang, Si-Lu Chen, **hua Chen and Guilin Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, X., Yang, M. et al. Design and Positioning Control of a Flexure-Based Nano-positioning Stage Driven by Halbach Array Voice Coil Actuator. Int. J. Precis. Eng. Manuf. 23, 281–290 (2022). https://doi.org/10.1007/s12541-022-00619-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00619-0

Keywords

Navigation