Log in

Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The ultimate objective of this study is to find a way to replace toxic lead-based solder with a non-toxic replacement that retains all of the desirable characteristics of the conventional solder. In this work, the integral and partial enthalpy of mixing for Sn–Ga–In ternary alloy systems were measured by the help of drop calorimeter along six of the cross sections at different temperatures of 673 K, 723 K and 773 K. Pieces of pure tin were dropped into molten Ga0.25In0.75, Ga0.50In0.50, Ga0.75In0.25 alloys and pieces of pure Indium into Ga0.25Sn0.75, Ga0.50Sn0.50, Ga0.75Sn0.25. In order to calculate the interaction parameter, Redlich–Kister–Muggianu (RKM) model was used which considers the substitutional solution mechanism. Geometric models i.e. Kohler, Muggianu, Chou, Toop, and Hillert have been used to determine the integral mixing enthalpies and compared with experimental data. It has been seen a good agreement between the theoretical models and results of this study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data substantiating the conclusions of this study are presented within the article. For supplementary data that enhance the study, interested parties may contact the corresponding author and request access.

References

  1. P.D. Sonawane, V.K. Bupesh Raja, K. Palanikumar, E. Ananda Kumar, N. Aditya, V. Rohit, Effects of gallium, phosphorus and nickel addition in lead-free solders: a review. Mater. Today Proc. 46, 3578–3581 (2020). https://doi.org/10.1016/j.matpr.2021.01.335

    Article  CAS  Google Scholar 

  2. M.N. Ervina Efzan, M.N. Nur Faziera, Review on the effect of Gallium in solder alloy. IOP Conf. Ser. Mater. Sci. Eng. 957, 012054 (2020). https://doi.org/10.1088/1757-899X/957/1/012054

    Article  Google Scholar 

  3. V. Singh, D. Jaiswal, D. Pathote, C.K. Behera, Drop calorimetric measurement of In–Zn system for lead-free solder applications. Mater. Today Proc. 57, 285–288 (2022). https://doi.org/10.1016/j.matpr.2022.02.601

    Article  CAS  Google Scholar 

  4. M.S. Yeh, Effects of indium on the mechanical properties of ternary Sn–In–Ag solders. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34(2), 361–365 (2003). https://doi.org/10.1007/s11661-003-0337-0

    Article  Google Scholar 

  5. C.K. Behera, A. Sonaye, Measurement of zinc activity in the ternary In–Zn–Sn alloys by EMF method. Thermochim. Acta 568, 196–203 (2013). https://doi.org/10.1016/j.tca.2013.06.039

    Article  CAS  Google Scholar 

  6. M.R. Kumar, S. Mohan, C.K. Behera, Measurements of mixing enthalpy for a lead-free solder Bi–In–Sn system. J. Electron. Mater. 48(12), 8096–8106 (2019). https://doi.org/10.1007/s11664-019-07646-0

    Article  CAS  Google Scholar 

  7. C.K. Behera, M. Shamsuddin, Thermodynamic investigations of Sn–Zn–Ga liquid solutions. Thermochim. Acta 487(1–2), 18–25 (2009). https://doi.org/10.1016/j.tca.2009.01.004

    Article  CAS  Google Scholar 

  8. F.M. Azizan, H. Purwanto, M.Y. Mustafa, Effect of Sn addition on mechanical properties of zinc-based alloy. Adv. Mater. Res. 576, 378–381 (2012). https://doi.org/10.4028/www.scientific.net/AMR.576.378

    Article  CAS  Google Scholar 

  9. A.V. Khvan, T. Babkina, A.T. Dinsdale, I.A. Uspenskaya, I.V. Fartushna, A.I. Druzhinina, A.B. Syzdykova, M.P. Belov, I.A. Abrikosov, Thermodynamic properties of tin: part I experimental investigation, ab-initio modelling of α-, β-phase and a thermodynamic description for pure metal in solid and liquid state from 0 K. Calphad 65, 50–72 (2019). https://doi.org/10.1016/j.calphad.2019.02.003

    Article  CAS  Google Scholar 

  10. V. Singh, D. Pathote, D. Jaiswal, M.R. Kumar, K.K. Singh, C.K. Behera, Measurement of mixing enthalpies for Sn–Bi–Sb lead-free solder system. J. Electron. Mater. 52, 6316–6334 (2023). https://doi.org/10.1007/s11664-023-10579-4

    Article  CAS  Google Scholar 

  11. I. Ansara, J.P. Bros, C. Girard, Thermodynamic analysis of the GaIn, AlGa, AlIn and the AlGaIn systems. Calphad 2(3), 187–196 (1978). https://doi.org/10.1016/0364-5916(78)90008-1

    Article  CAS  Google Scholar 

  12. T.J. Anderson, I. Ansara, The Ga–In (Gallium–Indium) system. J. Phase Equilib. 12(1), 64–72 (1991). https://doi.org/10.1007/BF02663677

    Article  CAS  Google Scholar 

  13. I. Ansara, M. Gambino, J.P. Bros, Study of thermodynamics of the ternary system gallium–indium–antimony. J. Cryst. Growth 32(1), 101–110 (1976). https://doi.org/10.1016/0022-0248(76)90016-6

    Article  CAS  Google Scholar 

  14. D. Jendrzejczyk-Handzlik, P. Handzlik, Enthalpies of mixing of liquid Ga–In and Cu–Ga–In alloys. J. Mol. Liq. 293, 111543 (2019). https://doi.org/10.1016/j.molliq.2019.111543

    Article  CAS  Google Scholar 

  15. D. Jendrzejczyk-Handzlik, P. Handzlik, Mixing enthalpies of liquid Au–Ga–In alloys. J. Mol. Liq. 301, 112439 (2020). https://doi.org/10.1016/j.molliq.2019.112439

    Article  CAS  Google Scholar 

  16. B. Predel, D.W. Stein, Thermodynamic properties of the gallium-indium systems. J. Less-Common Met. 18(1), 49–57 (1969). https://doi.org/10.1016/0022-5088(69)90119-2

    Article  CAS  Google Scholar 

  17. V. Singh, D. Pathote, D. Jaiswal, K.K. Singh, C.K. Behera, Calorimetric measurements of Ga–In, Ga–Sn, and In–Sn binary alloy systems as sustainable lead-free solder alternatives. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11521-4

    Article  Google Scholar 

  18. T.J. Anderson, I. Ansara, The Ga–Sn (Gallium–Tin) system. J. Phase Equilib. 13(2), 181–189 (1992). https://doi.org/10.1007/BF02667485

    Article  CAS  Google Scholar 

  19. D. Li, S. Delsante, W. Gong, G. Borzone, Partial and integral enthalpies of mixing of Ag–Ga–Sn liquid alloys. Thermochim. Acta 523(1–2), 51–62 (2011). https://doi.org/10.1016/j.tca.2011.04.032

    Article  CAS  Google Scholar 

  20. S. Kulawik, W. Gierlotka, A. Dębski, W. Gasior, A. Zajaczkowski, Thermodynamic assessment of the Ga–Sn–Zn system. Calphad, 69, 101765 (2020). https://doi.org/10.1016/j.calphad.2020.101765

    Article  Google Scholar 

  21. D. Zivkovic, D. Manasijevic, Z. Zivkovic, Thermodynamic study of Ga–Sn and Ga–Zn systems using quantitative differential thermal analysis. J. Therm. Anal. Calorim. 74(1), 85–96 (2003). https://doi.org/10.1023/A:1026373602352

    Article  CAS  Google Scholar 

  22. M. Rechchach, A. Sabbar, H. Flandorfer, H. Ipser, Enthalpies of mixing of liquid In–Sn and In–Sn–Zn alloys. Thermochim. Acta 502(1–2), 66–72 (2010). https://doi.org/10.1016/j.tca.2010.02.008

    Article  CAS  Google Scholar 

  23. T.M. Korhonen, J.K. Kivilahti, Thermodynamics of the Sn–In–Ag solder system. J. Electron. Mater. 27(3), 149–158 (1998). https://doi.org/10.1007/s11664-998-0205-1

    Article  CAS  Google Scholar 

  24. B.J. Lee, C.S. Oh, J.H. Shim, Thermodynamic assessments of the Sn–In and Sn–Bi binary systems. J. Electron. Mater. 25, 983 (1996). https://doi.org/10.1007/BF02666734

    Article  CAS  Google Scholar 

  25. C. Luef, H. Flandorfer, H. Ipser, Enthalpies of mixing of liquid alloys in the In–Pd–Sn system and the limiting binary systems. Thermochim. Acta 417(1), 47–57 (2004). https://doi.org/10.1016/j.tca.2004.01.019

    Article  CAS  Google Scholar 

  26. D. Zivkovic, A. Mitovski, L. Balanovic, D. Manasijevic, Z. Zivkovic, Thermodynamic analysis of liquid In–Sn alloys using Oelsen calorimetry. J. Therm. Anal. Calorim. 102(3), 827–830 (2010). https://doi.org/10.1007/s10973-010-0785-x

    Article  CAS  Google Scholar 

  27. R. Hultgrcn, R.L. Orr, P.D. Anderson, K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963)

    Google Scholar 

  28. I. Ansara, N. Dupin, Cost 507 Thermo Chemical Database for Light Metal Alloys. European Commission DG X11 (European Commission, Luxembourg, 1998). https://www.opencalphad.com/databases/CGNA18499ENC_001.pdf

  29. M. El Maniani, A. Sabbar, Partial and integral enthalpies of mixing in the liquid Ag–In–Sn–Zn quaternary alloys. Thermochim. Acta 592, 1–9 (2014). https://doi.org/10.1016/j.tca.2014.07.028

    Article  CAS  Google Scholar 

  30. B. Sundman, B. Jansson, J.O. Andersson, The thermo-calc databank system. Calphad 9(2), 153–190 (1985). https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  31. V. Singh, D. Jaiswal, D. Pathote, K.K. Singh, C.K. Behera, Measurement of mixing enthalpies for Bi -Zn lead-free solder system. Mater. Today Proc. 57, 285–288 (2022).https://doi.org/10.1016/j.matpr.2022.02.601

    Article  CAS  Google Scholar 

  32. D. Jaiswal, D. Pathote, V. Singh, C.K. Behera, Electrochemical behaviour of lead-free Sn-In-Al solders alloys in 3.5 wt.% NaCl solution. Mater. Today Proc. 57, 187–193 (2022). https://doi.org/10.1016/j.matpr.2022.02.315

    Article  CAS  Google Scholar 

  33. D. Jaiswal, V. Singh, D. Pathote, C.K. Behera, Electrochemical behaviour of lead-free Sn–0.7Cu–xIn solders alloys in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 32, 23371–23384 (2021). https://doi.org/10.1007/s10854-021-06824-3

    Article  CAS  Google Scholar 

  34. D. Jaiswal, D. Pathote, V. Singh, C.K. Behera, Effect of Al addition on electrochemical behavior of Sn-0.7Cu-xAl lead-free solders alloys in 3.5 wt. % NaCl solution. J. Mater. Eng. Perform. 31, 7550–7560 (2022). https://doi.org/10.1007/s11665-022-06771-y

    Article  CAS  Google Scholar 

  35. M.R. Kumar, V. Singh, V.K. Rai, D. Jaiswal, C.K. Behera, Investigation on mixing heat effect of Bi-In and In-Sn system at 730 K. Mater. Today Proc. 18, 2917–2923 (2019). https://doi.org/10.1016/j.matpr.2019.07.161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to the Head of the Department of Metallurgical Engineering at the Indian Institute of Technology (Banaras Hindu University), Varanasi, India, for providing essential support during the execution of this research.

Funding

No financial support was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Vikrant Singh—Conceptualization, methodology, formal analysis, writing of the original draft. Dileep Pathote—Visualization, Dheeraj Jaiswal—Visualization. Kamalesh K. Singh and C.K. Behera—supervision and writing of the original draft.

Corresponding author

Correspondence to C. K. Behera.

Ethics declarations

Conflict of interest

The authors confirm the absence of any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Pathote, D., Jaiswal, D. et al. Measurements of Enthalpies of Mixing of Sn–Ga–In Ternary Alloy System by Calorimetric Technique. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01726-5

Keywords

Navigation