Log in

Hydrogen-Free Active Screen Plasma Nitriding of AISI 316 L Stainless Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The paper discusses active screen plasma nitriding (ASPN) of AISI 316 L austenitic stainless steel without the use of hydrogen. It is shown that hydrogen-free plasma nitriding with double-folded active screen provides the formation of hard diffusion layers at 570 °С. In the case of conventional plasma nitriding without the use of the active screen, the diffusion layers are obtained at 600 °С and have lower length and hardness. The increase in the ASPN process time from 30 to 360 min results in the thickness growth of the nitrided layers from 10 to 90 μm and the growth in the S phase (expanded austenite) content. The time increase of the ASPN process is accompanied by the reduction in the corrosion resistance of 316 L austenitic stainless steel. But at a relatively short process time (30 min), when the thickness of diffusion layers does not exceed 10–20 μm, the corrosion resistance even slightly improves at a simultaneous hardness growth and wear rate reduction. As a result, high-temperature and high-speed hydrogen-free plasma nitriding is demonstrated for 316 L austenitic stainless.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.Y. Dong, P. Zhang, J.C. Pang, D.M. Chen, K. Yang, Z.F. Zhang, Mater. Sci. Eng. A 587, 185 (2013). https://doi.org/10.1016/j.msea.2013.08.056

    Article  CAS  Google Scholar 

  2. L.-H. Lin, S.-C. Chen, C.-Z. Wu, J.-M. Hung, K.-L. Ou, Appl. Surf. Sci. 257, 7375 (2011). https://doi.org/10.1016/j.apsusc.2011.01.065

    Article  CAS  Google Scholar 

  3. K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R Rep. 6, 39 (2009). https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  4. T. Bell, Surf. Eng. 18, 415 (2002). https://doi.org/10.1179/026708402225006268

    Article  CAS  Google Scholar 

  5. S. Corujeira Gallo, X. Li, H. Dong, Tribol Lett. 45, 153 (2012). https://doi.org/10.1007/s11249-011-9875-6

    Article  CAS  Google Scholar 

  6. S. Corujeira Gallo, H. Dong, Appl. Surf. Sci. 258, 608 (2011). https://doi.org/10.1016/j.apsusc.2011.06.158

    Article  CAS  Google Scholar 

  7. A. Devaraju, A. Elaya Perumal, J. Alphonsa, S.V. Kailas, S. Venugopal, Wear 288, 17 (2012). https://doi.org/10.1016/j.wear.2012.03.002

    Article  CAS  Google Scholar 

  8. A. Martinavicius, G. Abrasonis, A.C. Scheinost, R. Danoix, F. Danoix, J.C. Stinville, G. Talut, C. Templier, O. Liedke, S. Gemming, W. Moeller, Acta Mater. 60, 4065 (2012). https://doi.org/10.1016/j.actamat.2012.04.014

    Article  CAS  Google Scholar 

  9. H. Dong, Int. Mater. Rev. 55, 65 (2010). https://doi.org/10.1179/095066009X12572530170589

    Article  CAS  Google Scholar 

  10. E. Menthe, K.T. Rie, J.W. Schultze, S. Simson, Surf. Coat. Technol. 74 (1), 412 (1995) https://doi.org/10.1016/0257-8972(95)08246-8

  11. C.M. Lepienski, F.C. Nascimento, C.E. Foerster, S.L.R. da Silva, C.J. de M. Siqueira, C. Alves Jr., Mater. Sci. Eng. A 489, 201 (2008). https://doi.org/10.1016/j.msea.2007.12.012

    Article  CAS  Google Scholar 

  12. Y. Sun, Mater. Sci. Eng. A 404, 124 (2005). https://doi.org/10.1016/j.msea.2005.05.061

    Article  CAS  Google Scholar 

  13. L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcantara, P.A.P. Nascente, Mater. Sci. Eng. A 431, 315 (2006). https://doi.org/10.1016/j.msea.2006.06.023

    Article  CAS  Google Scholar 

  14. R.R.M. de Sousa, F.O. de Araujo, J.A.P. da Costa, T. Dumelow, R.S. de Oliveira, C. Alves, Vacuum 83, 1402 (2009). https://doi.org/10.1016/j.vacuum.2009.04.054

    Article  CAS  Google Scholar 

  15. T. Czerwiec, N. Renevier, H. Michel, Surf. Coat. Technol. 131, 267 (2000). https://doi.org/10.1016/S0257-8972(00)00792-1

    Article  CAS  Google Scholar 

  16. Y. Li, Z. Wang, L. Wang, Appl. Surf. Sci. 298, 243 (2014). https://doi.org/10.1016/j.apsusc.2014.01.177

    Article  CAS  Google Scholar 

  17. C.X. Li, Surf. Eng. 26 (12), 135 (2010) https://doi.org/10.1179/174329409X439032

  18. P. Hubbard, S.J. Dowey, E.D. Doyle, D.G. McCulloch, Surf. Eng. 22(4), 243 (2013). https://doi.org/10.1179/174329406X122937

    Article  CAS  Google Scholar 

  19. S. Domínguez-Meister, I. Ibáñez, A. Dianova, M. Brizuela, I. Braceras, Surf. Coat. Technol. 411, 126998 (2021). https://doi.org/10.1016/j.surfcoat.2021.126998

    Article  CAS  Google Scholar 

  20. C.X. Li, T. Bell, Wear 256 (1112), 1144 (2004) https://doi.org/10.1016/j.wear.2003.07.006

  21. A. Nishimoto, K. Nagatsuka, R. Narita, H. Nii, K. Akamatsu, Surf. Coat. Technol. 205, S365 (2010) https://doi.org/10.1016/j.surfcoat.2010.08.034

  22. A. Nishimoto, T. Matsukawa, H. Nii, ISIJ Int. 54, 916 (2014). https://doi.org/10.2355/isi**ternational.54.916

    Article  CAS  Google Scholar 

  23. M. Naeem, M. Shafiq, M. Zaka-ul-Islam, A. Ashiq, J.C. Díaz-Guillén, M. Shahzad, M. Zakaullah, Mater. Des. 108, 745 (2016). https://doi.org/10.1016/j.matdes.2016.07.044

    Article  CAS  Google Scholar 

  24. S. Wang, W. Cai, J. Li, W. Wei, J. Hu, Mater. Lett. 105, 47 (2013). https://doi.org/10.1016/j.matlet.2013.04.031

    Article  CAS  Google Scholar 

  25. R.R.M. De Sousa, F.O. de Araújo, L.C. Gontijo, J.A.P. da Costa, I.O. Nascimento, C. Alves Jr., Mater. Res. 17, 427 (2014). https://doi.org/10.1590/S1516-14392013005000197

    Article  CAS  Google Scholar 

  26. M. Yazici, O. Çomakli, T. Yetim, A.F. Yetim, A. Çelik, Surf. Coat. Technol. 261, 181 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.037

    Article  CAS  Google Scholar 

  27. Y. Hoshiyama, R. Mizobata, H. Miyake, Surf. Coat. Technol. 307, 1041 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.032

    Article  CAS  Google Scholar 

  28. T. Fraczek, M. Ogorek, Z. Skuza, R. Prusak, Int. J. Adv. Manuf. Technol. 109, 1357 (2020). https://doi.org/10.1007/s00170-020-05726-8

    Article  Google Scholar 

  29. S.G. Kim, J.H. Lee, N. Saito, O. Takai, J. Phys. Conf. Ser. 417, 12 (2013). https://doi.org/10.1088/1742-6596/417/1/012023

    Article  CAS  Google Scholar 

  30. C.A. Figueroa, F. Alvarez, Appl. Surf. Sci. 253(4), 1806 (2006). https://doi.org/10.1016/j.apsusc.2006.03.015

    Article  CAS  Google Scholar 

  31. A. Sokolowska, J. Rudnicki, P. Beer, L. Maldzinski, J. Tacikowski, J. Baszkiewicz, Surf. Coat. Technol. 142–144, 1040 (2001). https://doi.org/10.1016/S0257-8972(01)01260-9

    Article  Google Scholar 

  32. M.K. Sharma, B.K. Saikia, A. Phukan, B. Ganguli, Surf. Coat. Technol. 201(6), 2407 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.006

    Article  CAS  Google Scholar 

  33. R.R.M. de Sousa, F.O. de Araujo, L.C. Gontijo, J.A.P. da Costa, C. Alves, Vacuum 86, 2048 (2012). doi:https://doi.org/10.1016/j.vacuum.2012.05.008

    Article  CAS  Google Scholar 

  34. V. Oskirko, I. Goncharenko, A. Pavlov, A. Zakharov, V. Semenov, J. Phys. Conf. Ser. 1393, 012111 (2019). https://doi.org/10.1088/1742-6596/1393/1/012111

    Article  CAS  Google Scholar 

  35. V. Oskirko, I. Goncharenko, A. Pavlov, A. Zakharov, S. Rabotkin, A. Grenadyorov, Active screen hydrogen free plasma nitriding steel, The 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). (2020) 745–749, https://doi.org/10.1109/EFRE47760.2020.9242122

  36. Y. Sun, X.Y. Li, T. Bel, J. Mater. Sci. 34, 4793 (1999). https://doi.org/10.1023/A:1004647423860

    Article  CAS  Google Scholar 

  37. C.X. Li, T. Bell, Corros. Sci. 46(6), 1527 (2004). https://doi.org/10.1016/j.corsci.2003.09.015

    Article  CAS  Google Scholar 

  38. L. Gil, S. Brühl, L. Jiménez, O. Leon, R. Guevara, M.H. Staia, Surf. Coat. Technol. 20, 4424 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.081

    Article  CAS  Google Scholar 

  39. ASTM, G102-89(2004), Standard Practice for Calculation of Corrosion Rates and Related Information From Electrochemical Measurements, ASTM International, West Conshohocken, PA, 2004

  40. A. Wells, I. Le, R. Strydom, Surf. Eng. 2(4), 263 (1986). https://doi.org/10.1179/sur.1986.2.4.263

    Article  Google Scholar 

  41. A. Wells, I. Le, R. Strydom, Surf. Eng. 4(1), 55 (1988). https://doi.org/10.1179/SUR.1988.4.1.55

    Article  CAS  Google Scholar 

  42. T. Bacci, F. Borgioli, E. Galvanetto, G. Pradelli, Surf. Coat. Technol. 139 (23), 251 (2001) https://doi.org/10.1016/S0257-8972(01)01010-6

  43. H.R. Abedi, M. Salehi, M. Yazdkhasti, A. Hemmasian-E, Vacuum 85(3), 443 (2010). https://doi.org/10.1016/j.vacuum.2010.08.008

    Article  CAS  Google Scholar 

  44. S.-G. Kim, K.-H. Yeo, Y.-K. Cho, J.-H. Lee, M. Okumiya, Adv. Mater. Sci. Eng. 8, 257 (2018). https://doi.org/10.4236/ampc.2018.86017

    Article  CAS  Google Scholar 

  45. X. Wang, Z. Liu, Y. Chen, J. Sun, Q. He, Q. Liu, G. Liu, K. **e, Surf. Coat. Technol. 361, 349 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.028

    Article  CAS  Google Scholar 

  46. F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Surf. Coat. Technol. 200 (7), 2474 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.122

  47. E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, K.-T. Rie, Surf. Coat. Technol. 133–134, 259 (2000). https://doi.org/10.1016/S0257-8972(00)00930-0

    Article  Google Scholar 

  48. Y. Sun, T. Bell, Wear 218, 34 (1998). https://doi.org/10.1016/S0043-1648(98)00199-9

    Article  CAS  Google Scholar 

  49. W.J. Yang, M. Zhang, Y.H. Zhao, M.L. Shen, H. Lei, L. Xu, J.Q. **ao, J. Gong, B.H. Yu, C. Sun, Surf. Coat. Technol. 298, 64 (2016). https://doi.org/10.1016/j.surfcoat.2016.04.045

    Article  CAS  Google Scholar 

  50. Z.W. Wang, Y. Li, Z.H. Zhang, S.Z. Zhang, P. Ren, J.X. Qiu, W.W. Wang, Y.J. Bi, Y.Y. He, Results Phys. 24, 104132 (2021). https://doi.org/10.1016/j.rinp.2021.104132

    Article  Google Scholar 

  51. E.L. Dalibón, R.D. Moreira, D. Heim, C. Forsich, S.P. Brühl, Diam. Relat. Mater. 106, 107881 (2020). https://doi.org/10.1016/j.diamond.2020.107881

    Article  CAS  Google Scholar 

  52. A.F. Smith, Wear 96(3), 301 (1984). https://doi.org/10.1016/0043-1648(84)90043-7

    Article  Google Scholar 

  53. I. Boromei, L. Ceschini, A. Marconi, C. Martini, Wear 302(1–2), 899 (2013). https://doi.org/10.1016/j.wear.2013.01.086

    Article  CAS  Google Scholar 

  54. A.S. Grenadyorov, A.A. Solovyev, K.V. Oskomov, Tech. Phys. Lett. 46, 1060 (2020). https://doi.org/10.1134/S106378502011005X

    Article  CAS  Google Scholar 

  55. E. Damerchi, A. Abdollah-zadeh, R. Poursalehi, M. Salari Mehr, J. Alloys Compd. 772, 612 (2019). https://doi.org/10.1016/j.jallcom.2018.09.083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was financially supported by Grant N FWRM-2021-0006 in terms of the Government Contract of the Institute of High Current Electronics SB RAS. The authors wish to acknowledge the assistance and support of the Materials Science Center of National Research Tomsk State University for Quanta 200 SEM and XRD-6000 diffractometer employed in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solovyev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenadyorov, A.S., Oskirko, V.O., Zakharov, A.N. et al. Hydrogen-Free Active Screen Plasma Nitriding of AISI 316 L Stainless Steel. Met. Mater. Int. 29, 1498–1509 (2023). https://doi.org/10.1007/s12540-022-01308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01308-3

Keywords

Navigation