Log in

High Performance Cu Matrix Nanocomposite Fabricated Through Spark Plasma Sintering of Cu and Cu-Coated CNT

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, the effects of Cu coating of carbon nanotube (CNTs) as reinforcement on structural, microstructural, physical and mechanical properties of Cu–3 wt%CNT nanocomposite were investigated. CNTs were coated by Cu using the electroless technique for 1 and 2 h. Bulk nanocomposite samples were produced by spark plasma sintering of a mechanically milled powder mixture of Cu and CNT. Kinetic study showed a nucleation and growth mechanism for the Cu coating process. Microstructural characterization showed that the coated CNTs dispersed more homogeneously in the powder mixture. Results also revealed that 1 h coating of CNTs led to the higher relative density and thermal properties. The coating process increased 62 Brinell hardness (BHN) in hardness, 14% IACS in electrical conductivity for Cu–CNT nanocomposite. Transmission electron microscopy analysis showed a strong bonding between CNT and Cu matrix within the distinguishable interface. About 20 MPa increase in shear strength of nanocomposite was observed by 1 h coating of CNTs. Also, the fracture surfaces exhibit changes in the mode of fracture by well-bonded CNTs with the Cu matrix. The coefficient of thermal expansion and thermal distortion parameter revealed 12.7 ppm/k and 0.037 ppm.m/w for the sample including 1 h coated CNT, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Mortensen, J.L. Llorca, Metal matrix composites. J. Annu. Rev. Mater. Res. 40, 243–270 (2010)

    Article  CAS  Google Scholar 

  2. V.M. Kumar, C.V. Venkatesh, A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Mater. Res. Express 6, 072001 (2019)

    Article  CAS  Google Scholar 

  3. A.D. Moghadam, E. Omrani, P. Menezes, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos. Part B 77, 402–420 (2015)

    Article  CAS  Google Scholar 

  4. Z. An, M. Toda, D. Ono, Comparative investigation into surface charged multi-walled carbon nanotubes reinforced Cu nanocomposites for interconnect applications. Compos. Part B 95, 137–143 (2016)

    Article  CAS  Google Scholar 

  5. R. Miller, D. Liu, M. Horsinka, T. Nguyen, K. Kuppuswamy, T. Towe, H. Li, M. Berube, J. Harrison, E. Wolak, Composite-copper, low-thermal-resistance heat sinks for laser-diode bars, mini-bars and single-emitter devices. Int. Soc. Opt. Photonics 6878, 687607 (2008)

    Google Scholar 

  6. S. Sheibani, S. Heshmati-Manesh, A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying. Acta Mater. 58, 6828–6834 (2010)

    Article  CAS  Google Scholar 

  7. Y. **, K. Adachi, T. Takeuchi, H.G. Suzuki, Ageing characteristics of Cu–Cr in situ composite. J. Mater. Sci. 33, 1333–1341 (1998)

    Article  CAS  Google Scholar 

  8. E.Y. Yoon, D.J. Lee, B. Park, M.R. Akbarpour, M. Farvizi, H.S. Kim, Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion. Met. Mater. Int. 19, 927–932 (2013)

    Article  CAS  Google Scholar 

  9. M. Masroor, S. Sheibani, A. Ataie, Effect of milling energy on preparation of Cu–Cr/CNT hybrid nano-composite by mechanical alloying. Trans. Nonferrous Met. Soc. China 26, 1359–1366 (2016)

    Article  CAS  Google Scholar 

  10. P.C. Tsai, Y.R. Jeng, J.T. Lee, I. Stachiv, P. Sittner, Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites. Diam. Relat. Mater. 74, 197–204 (2017)

    Article  CAS  Google Scholar 

  11. A. Bor, B. Ichinkhorloo, B. Uyanga, J. Lee, H. Choi, Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process. Powder Technol. 323, 563–573 (2018)

    Article  CAS  Google Scholar 

  12. A. Ghorbani, S. Sheibani, A. Ataie, Microstructure and mechanical properties of consolidated Cu–Cr–CNT nanocomposite prepared via powder metallurgy. J. Alloys Compd. 732, 818–827 (2018)

    Article  CAS  Google Scholar 

  13. S. Shakibhamedan, M. Abdi, S. Sheibani, Comparative study on hot rolling of Cu–Cr and Cu–Cr–CNT nanocomposites. Trans. Nonferrous Metals Soc. China 28, 2044–2052 (2018)

    Article  Google Scholar 

  14. W.M. Daoush, Processing and characterization of CNT/Cu nanocomposites by powder technology. Powder Metall. Met. Ceram. 47, 531–537 (2008)

    Article  CAS  Google Scholar 

  15. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials. A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  CAS  Google Scholar 

  16. K. Chu, C. Jia, L. Jiang, W. Li, Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites. Mater. Des. 45, 407–411 (2013)

    Article  CAS  Google Scholar 

  17. W.M. Daoush, B.K. Lim, C.B. Mo, D.H. Nam, S.H. Hong, Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater. Sci. Eng. 513, 247–253 (2009)

    Article  CAS  Google Scholar 

  18. J.L. Song, W.G. Chen, L.L. Dong, J.J. Wang, N. Deng, An electroless plating and planetary ball milling process for mechanical properties enhancement of bulk CNTs/Cu composites. J. Alloys Compd. 720, 54–62 (2017)

    Article  CAS  Google Scholar 

  19. X. Chen, J. **a, J. Peng, W. Li, S. **e, Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 60, 301–306 (2000)

    Article  CAS  Google Scholar 

  20. M. Zhou, Y. Mai, H. Ling, F. Chen, W. Lian, X. Jie, Electrodeposition of CNTs/copper composite coatings with enhanced tribological performance from a low concentration CNTs colloidal solution. Mater. Res. Bull. 44, 537–543 (2008)

    Google Scholar 

  21. A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E. Minay, M. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006)

    Article  CAS  Google Scholar 

  22. Q. Li, S. Fan, W. Han, C. Sun, W. Liang, Coating of carbon nanotube with nickel by electroless plating method. J. Appl. Phys. 36, 501–503 (1997)

    Article  Google Scholar 

  23. V.M. Dubin, Y. Shacham-Diamand, B. Zhao, P. Vasudev, C.H. Ting, Selective and blanket electroless copper deposition for ultralarge scale integration. J. Electrochem. Soc. 144, 898–908 (1997)

    Article  CAS  Google Scholar 

  24. S.F. Moustafa, S.A. El-Badry, A.M. Sanad, Effect of graphite with and without copper coating on consolidation behavior and sintering of copper–graphite composite. Powder Metal. 40, 201–206 (1997)

    Article  CAS  Google Scholar 

  25. C. Xu, G. Wu, Z. Liu, D. Wu, T.T. Meek, Q. Han, Preparation of copper nanoparticles on carbon nanotubes by electroless plating. Mater. Res. Bull. 39, 1499–1505 (2004)

    Article  CAS  Google Scholar 

  26. S. Armyanov, J. Georgieve, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, A. Ruffini, Electroless deposition of Ni–Cu–P alloys in acidic solutions. Electrochem. Solid State Lett. 2, 323 (1999)

    Article  CAS  Google Scholar 

  27. J. Ru, H. He, S. Wei, Preparation and characterization of Ni–Cu dual coated ZTA particles by ionic liquid-assisted electroless plating as reinforcement of metal-based composites. Surf. Coat. Technol. 387, 125476 (2020)

    Article  CAS  Google Scholar 

  28. G. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  29. ASTM, Standard test method for shear strength of plastics by punch tool (2010)

  30. A. Maqbool, F. Ahmad Khalid, M. Asif Hussain, N. Baksh, Synthesis of copper coated carbon nanotubes for aluminium matrix composites. IOP Conf. Ser. 60(1), 012040 (2014)

    Article  CAS  Google Scholar 

  31. A. Maqbool, M. Asif Hussain, F. Ahmad Khalod, N. Bakhsh, A. Hussain, M. Ho Kim, Mechanical characterization of copper coated carbon nanotubes reinforced aluminium matrix composites. Mater. Charact. 86, 39–48 (2013)

    Article  CAS  Google Scholar 

  32. J.P. Braganti, O. Held, F.A. Kuhnast, E. Lllekova, Kinetic study of isothermal crystallization in amorphous Al33Ni16Zr51 produced by mechanical alloying. Thermochem. Acta 362, 71–78 (2000)

    Article  CAS  Google Scholar 

  33. M.A. Bab, L. Mendoza-Zelis, L.C. Damonte, Nanocrystalline HfN produced by mechanical milling: kinetic aspects. Acta Mater. 49, 4205–4213 (2001)

    Article  CAS  Google Scholar 

  34. J.W. Christian, The Theory of Phase Transformation in Metals and Alloys, 2nd edn. (Pergamon, Oxford, 2002)

    Google Scholar 

  35. L. Li, Y. Bao, J. Yi, L. Liu, S. Mao, Preparation of CNT/Cu nano composite powder with uniform dispersion and strong interface bonding by SP method. Powder Technol. 325, 107–112 (2018)

    Article  CAS  Google Scholar 

  36. M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387–5393 (2009)

    Article  CAS  Google Scholar 

  37. R.W. Siegel, G.E. Fougere, Mechanical properties of nanophase metals. Nanostruct. Mater. 6, 205–216 (1995)

    Article  CAS  Google Scholar 

  38. J.M. Tao, X.F. Chen, P. Hong, J.H. Yi, Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition. J. Alloys Compd. 717, 232–239 (2017)

    Article  CAS  Google Scholar 

  39. Y. Yu, W. Zhang, H. Yu, Effect of Cu content and heat treatment on the properties and microstructure of W–Cu composites produced by hot extrusion with steel cup. Adv. Powder Technol. 26, 1047–1052 (2015)

    Article  CAS  Google Scholar 

  40. D.K. Lim, T. Shibayanagi, A.P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater. Sci. Eng. A 507, 194–199 (2009)

    Article  CAS  Google Scholar 

  41. R. Ghosh, D. Basak, S. Fuijhara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)

    Article  CAS  Google Scholar 

  42. G.E. Lucas, G.R. Odette, J.W. Sheckherd, Shear punch and microhardness tests for strength and ductility measurements, in The Use of Small-Scale Specimens for Testing Irradiated Material (ASTM International, 1986)

  43. S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010)

    Article  CAS  Google Scholar 

  44. G. Chai, Y. Sun, Q. Chen, Mechanical properties of carbon nanotube–copper nanocomposites. J. Micromech. Microeng. 18, 035013 (2008)

    Article  Google Scholar 

  45. Y. Sun, Q. Chen, Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95, 021901 (2009)

    Article  CAS  Google Scholar 

  46. Y.S. Suh, S.P. Joshi, K.T. Ramesh, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater. 57, 5848–5861 (2009)

    Article  CAS  Google Scholar 

  47. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483, 148–152 (2008)

    Article  CAS  Google Scholar 

  48. X. Long, Y. Bai, M. Algarni, Study on the strengthening mechanisms of Cu/CNT nano-composites. Mater. Sci. Eng. A 645, 347–356 (2015)

    Article  CAS  Google Scholar 

  49. Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 54, 1321–1326 (2006)

    Article  CAS  Google Scholar 

  50. B.R. You, S.B. Lee, A critical review on multiaxial fatigue assessments of metals. Int. J. Fatigue 18, 235–244 (1996)

    Article  CAS  Google Scholar 

  51. K. Kumar, V. Kripesh, A. Tay, Single-wall carbon nanotuve (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. J. Alloys Compd. 450, 229–237 (2008)

    Article  CAS  Google Scholar 

  52. X. Chen, J. Tao, J. Yi, Y. Liu, C. Li, R. Bao, Strengthening behavior of carbon nanotube-graphene hybrids in copper matrix composites. Mater. Sci. Eng. 718, 427–436 (2018)

    Article  CAS  Google Scholar 

  53. B. Cheng, R. Bao, J. Yi, C. Li, J. Tao, Y. Liu, S. Tan, X. You, Interface optimization of CNT/Cu composite by forming TiC nanoprecipitation and low interface energy structure via spark plasma sintering. J. Alloys Compd. 722, 852–858 (2017)

    Article  CAS  Google Scholar 

  54. B. Guo, B. Chen, X. Zhang, X. Cen, X. Wang, M. Song, S. Ni, J. Yi, T.D. Yong, Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135, 224–235 (2018)

    Article  CAS  Google Scholar 

  55. P.A. Carvalho, I. Fonseca, M.T. Marques, J.B. Correia, A. Almeida, R. Vilar, Characterization of copper-cementite nanocomposite produced by mechanical alloying. Acta Mater. 53, 967–976 (2005)

    Article  CAS  Google Scholar 

  56. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, T. Johnson, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2676–2769 (2002)

    Article  CAS  Google Scholar 

  57. V. Koti, R. George, P.G. Koppad, K.V. Murthy, A. Shakiba, Friction and wear characteristics of copper nanocomposites reinforced with uncoated and nickel coated carbon nanotubes. Mater. Res. Express 5, 095607 (2018)

    Article  CAS  Google Scholar 

  58. K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, H. Guo, Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol. 70, 298–304 (2010)

    Article  CAS  Google Scholar 

  59. H.L. Zhang, J.F. Li, K.F. Yao, L.D. Chen, Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J. Appl. Phys. 97, 114310 (2005)

    Article  CAS  Google Scholar 

  60. N. Ferrer-Anglada, V. Gomis, Z. El-Hachemi, U. Dettlaff-Weglikovska, M. Kaempgen, S. Roth, Carbon nanotube based composites for electronic applications: cNT-conducting polymers, CNT–Cu. Phys. Status Solidi 203, 1082–1087 (2006)

    Article  CAS  Google Scholar 

  61. T. Schubert, B. Trindade, T. Weibgarber, B. Kieback, interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A 475, 39–44 (2008)

    Article  CAS  Google Scholar 

  62. S. Gao, N. Zhao, Q. Liu, Y. Li, G. Xu, X. Cheng, J. Yang, Sc2W3O12/Cu composites with low thermal expansion coefficient and high thermal conductivity for efficient cooling of electronics. J. Alloys Compd. 779, 108–114 (2019)

    Article  CAS  Google Scholar 

  63. L. Guo, Z. Zhang, R. Kang, Y. Chen, X. Hou, Y. Wu, M. Wang, B. Wang, J. Cui, N. Jiang, C.T. Lin, J. Yu, Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO. RSC Adv. 8, 12337–12343 (2018)

    Article  CAS  Google Scholar 

  64. I. Firkowska, A. Boden, A.M. Vogt, S. Reich, Effect of carbon nanotube surface modification on thermal properties of copper–CNT composites. J. Mater. Chem. 21, 17541–17546 (2011)

    Article  CAS  Google Scholar 

  65. K. Chu, H. Guo, C. Jia, F. Yin, X. Zhang, X. Liang, H. Chen, Thermal properties of carbon nanotube–copper composites for thermal management applications. Nano. Express 5, 868–874 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the supports of the University of Tehran and the Iran Nanotechnology Initiative Council for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sheibani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakibhamedan, S., Sheibani, S. & Ataie, A. High Performance Cu Matrix Nanocomposite Fabricated Through Spark Plasma Sintering of Cu and Cu-Coated CNT. Met. Mater. Int. 27, 4271–4285 (2021). https://doi.org/10.1007/s12540-020-00816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00816-4

Keywords

Navigation