Log in

Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The work reviews the research and development status of magnesium alloy, with more attention to the methodologies and technologies adopted to improve the properties of AZ91 alloy. The drive force of utilizing magnesium alloys for automotive and biomedical application is light weightiness and biocompatibility respectively. However, the softness and high activity of magnesium alloys result in high wear and high corrosion rate respectively. One of the essential factors influencing the properties of magnesium alloy is its microstructure. Consequently, the grain size, morphology and distribution of phase constituents influence the properties of magnesium alloys. The modification of microstructure through processing route (hot working and cold working), heat treatment, and alloying elements improves the mechanical, corrosion, biocompatible, and tribological properties of magnesium alloys. Besides microstructural modification processes, addition of reinforcements, and coatings improves the properties of magnesium alloys. This article emphasis on the recent research on the technologies to improve the microstructure, hardness, tensile strength, ductility, yield strength, wear resistance, and corrosion resistance of magnesium alloy AZ91. Moreover, this review addresses the key issues hindering the applications of magnesium alloys for structural and biomedical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Blawert, N. Hort, K.U. Kainer, Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 57, 391–408 (2004)

    Google Scholar 

  2. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet et al., Magnesium alloy applications in automotive structures. JOM 60, 57–62 (2008)

    Article  CAS  Google Scholar 

  3. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)

    Article  Google Scholar 

  4. S. Mathaudhu, A. Luo, N. Neelameggham, E. Nyberg, W. Sillekens (eds.), Essential Readings in Magnesium Technology (Wiley, Hoboken, 2014)

    Google Scholar 

  5. A.A. Luo, Magnesium: current and potential automotive applications. JOM 54, 42–48 (2002)

    Article  CAS  Google Scholar 

  6. A.A. Luo, 8—Applications: aerospace, automotive and other structural applications of magnesium, in Fundamentals of Magnesium Alloy Metallurgy (Woodhead Publishing, 2013), pp. 266–316

  7. A.A. Luo, A.K. Sachdev, 12—Applications of magnesium alloys in automotive engineering, in Advances in Wrought Magnesium Alloys (Woodhead Publishing, 2012), pp. 393–426

  8. H. Hermawan, D. Dubé, D. Mantovani, 16—degradable metallic biomaterials for cardiovascular applications, in Metals for Biomedical Devices, ed. by M. Niinomi (Woodhead Publishing, Sawston, 2010), pp. 379–404

    Chapter  Google Scholar 

  9. H. Hornberger, Biomedical coatings on magnesium alloys—a review. Acta Biomater. 8, 2442–2455 (2012)

    Article  CAS  Google Scholar 

  10. S. Jafari, S.E. Harandi, R.K. Singh Raman, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM 67, 1143–1153 (2015)

    Article  CAS  Google Scholar 

  11. S. Shadambaz, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 8, 20–30 (2012)

    Article  CAS  Google Scholar 

  12. R.K. Singh Raman, S. Jafari, S.E. Harandi, Corrosion fatigue fracture of magnesium alloys in bioimplant applications: a review. Eng. Fract. Mech. 137, 97–108 (2015)

    Article  Google Scholar 

  13. Y. **n, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 7, 1452–1459 (2011)

    Article  CAS  Google Scholar 

  14. H. Westengen, H.M.M.A. Rashed, Magnesium: alloying, in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016)

  15. M. Govindaraju, R. Vaira Vignesh, R. Padmanaban, Effect of heat treatments on the microstructure and mechanical properties of friction stir processed magnesium alloy AZ91D. Met. Sci. Heat Treat. (Article in Press)

  16. R. Vaira Vignesh, R. Padmanaban, M. Govindaraju, Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D. Surf. Topogr. Metrol. Prop. 7, 025020 (2019)

    Article  Google Scholar 

  17. R. Kocich, M. Greger, A. Macháčková, Simulation and practical verification of ECAP of magnesium alloy AZ91. J. Achiev. Mater. Manuf. Eng. 18, 295–298 (2006)

    Google Scholar 

  18. M. Greger, R. Kocich, L. Čížek, L. Dobrzański, I. Juřička, Possibilities of mechanical properties and microstructure improvement of magnesium alloys. Arch. Mater. Sci. Eng. 28, 83–90 (2007)

    Google Scholar 

  19. S. Khani, M.R. Aboutalebi, M.T. Salehi, H.R. Samim, H. Palkowski, Microstructural development during equal channel angular pressing of as-cast AZ91 alloy. Mater. Sci. Eng. A 678, 44–56 (2016)

    Article  CAS  Google Scholar 

  20. R. Štěpánek, L. Pantělejev, E. Mostaed, M. Vedani, Mechanical properties of extruded and ECAP processed magnesium alloy AZ91 at elevated temperature. Mater. Sci. Forum. 891, 366–371 (2017)

    Article  Google Scholar 

  21. K. Deng, J. Li, F. Xu, K. Nie, W. Liang, Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Mater. Des. 67, 72–81 (2015)

    Article  CAS  Google Scholar 

  22. S.S. Jamali, G. Faraji, K. Abrinia, Evaluation of mechanical and metallurgical properties of AZ91 seamless tubes produced by radial-forward extrusion method. Mater. Sci. Eng. A 666, 176–183 (2016)

    Article  CAS  Google Scholar 

  23. S.H. Kim, B.S. You, S.H. Park, Effect of billet diameter on hot extrusion behavior of Mg–Al–Zn alloys and its influence on microstructure and mechanical properties. J. Alloys Compd. 690, 417–423 (2017)

    Article  CAS  Google Scholar 

  24. G. Faraji, H. Jafarzadeh, H.J. Jeong, M.M. Mashhadi, H.S. Kim, Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy. Mater. Des. 35, 251–258 (2012)

    Article  CAS  Google Scholar 

  25. F. Pilehva, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, The influence of initial microstructure and temperature on the deformation behavior of AZ91 magnesium alloy. Mater. Des. 42, 411–417 (2012)

    Article  CAS  Google Scholar 

  26. A.S.J. Al-Zubaydi, A.P. Zhilyaev, S.C. Wang, P. Kucita, P.A.S. Reed, Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. J. Mater. Sci. 51, 3380–3389 (2016)

    Article  CAS  Google Scholar 

  27. Y.S. Kim, W.J. Kim, Microstructure and superplasticity of the as-cast Mg–9Al–1Zn magnesium alloy after high-ratio differential speed rolling. Mater. Sci. Eng. A 677, 332–339 (2016)

    Article  CAS  Google Scholar 

  28. T. Ryspaev, M. Janecek, R. Kral, V. Wesling, L. Wagner, Processing, superplastic properties and friction stir welding of fine-grained AZ31, AZ91, AE42 and QE22 magnesium alloys, in Materials Science Forum, vol. 838–839, pp. 220–224 (2016)

  29. J. Xu, G. Wu, W. Liu, Y. Zhang, W. Ding, Effects of rotating gas bubble stirring treatment on the microstructures of semi-solid AZ91–2Ca alloy. J. Magnes. Alloys 1, 217–223 (2013)

    Article  CAS  Google Scholar 

  30. S.F. Liu, B. Li, X.H. Wang, W. Su, H. Han, Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy. J. Mater. Process. Technol. 209, 3999–4004 (2009)

    Article  CAS  Google Scholar 

  31. S. Lee, S.H. Lee, D.H. Kim, Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metall. Mater. Trans. A 29, 1221–1235 (1998)

    Article  Google Scholar 

  32. S. Liu, B. Li, X. Wang, W. Su, H. Han, Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy. J. Mater. Process. Technol. 209, 3999–4004 (2009)

    Article  CAS  Google Scholar 

  33. H. Cai, F. Guo, X. Ren, J. Su, B. Chen, Effects of cerium on as-cast microstructure of AZ91 magnesium alloy under different solidification rates. J. Rare Earths 34, 736–741 (2016)

    Article  CAS  Google Scholar 

  34. S. Chen, P. **, G. Schumacher, N. Wanderka, Microstructure and interface characterization of a cast Mg2 B2O5 whisker reinforced AZ91D magnesium alloy composite. Compos. Sci. Technol. 70, 123–129 (2010)

    Article  CAS  Google Scholar 

  35. S.Y. Shim, S. G. Lim, Microstructure and aging behavior of AZ91 Mg alloy fabricated by inclined cooling plate, in Solid State Phenomena, pp. 350–353 (2006)

  36. Y. Wang, G. Liu, Z. Fan, Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 54, 689–699 (2006)

    Article  CAS  Google Scholar 

  37. A. Chalay-Amoly, A. Zarei-Hanzaki, P. Changizian, S.M. Fatemi-Varzaneh, M.H. Maghsoudi, An investigation into the microstructure/strain pattern relationship in backward extruded AZ91 magnesium alloy. Mater. Des. 47, 820–827 (2013)

    Article  CAS  Google Scholar 

  38. M. Zheng, W. Zhang, K. Wu, C. Yao, The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in situ TEM straining. J. Mater. Sci. 38, 2647–2654 (2003)

    Article  CAS  Google Scholar 

  39. A. Ekrami, F. Shahri, A. Mirak, Effect of rare-earth elements and quenching wheel speed on the structure, mechanical and thermal properties of rapidly solidified AZ91 Mg melt-spun ribbons. Mater. Sci. Eng. A 684, 586–591 (2017)

    Article  CAS  Google Scholar 

  40. T. Regułaa, E. Czekaja, A. Fajkiela, K. Saja, M. Lech-Gregab, M. Bronickic, Application of heat treatment and hot extrusion processes to improve mechanical properties of the AZ91 alloy. Arch. Foundry Eng. 10, 141–146 (2010)

    Google Scholar 

  41. J. Iwaszko, M. Strzelecka, Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy. Opt. Lasers Eng. 81, 63–69 (2016)

    Article  Google Scholar 

  42. M. Shanthi, C.Y.H. Lim, L. Lu, Effects of grain size on the wear of recycled AZ91 Mg. Tribol. Int. 40, 335–338 (2007)

    Article  CAS  Google Scholar 

  43. R.V. Vignesh, R. Padmanaban, Forecasting tribological properties of wrought AZ91D magnesium alloy using soft computing model. Russ. J. Non-Ferrous Met. 59, 135–141 (2018)

    Article  Google Scholar 

  44. A. Zafari, H.M. Ghasemi, R. Mahmudi, Tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 292–293, 33–40 (2012)

    Article  CAS  Google Scholar 

  45. S. Kumar, D. Kumar, J. Jain, J.K. Hirwani, Influence of load, sliding speed, and microstructure on wear response of AZ91 Mg alloy. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 230, 1462–1469 (2016)

    Article  CAS  Google Scholar 

  46. S. Kumar, J. Jain, D. Kumar, Tribological study of heat treated AZ91 alloy against Al6351 under dry conditions. Key Eng. Mater. 737, 168–173 (2017)

    Article  Google Scholar 

  47. Z. Wen, S. Duan, C. Dai, F. Yang, F. Zhang, Biodegradability and Surface chemistry of AZ31D compared with AZ91 magnesium alloy in a modified simulated body fluid. Int. J. Electrochem. Sci. 9, 7846–7864 (2014)

    Google Scholar 

  48. A. Zafari, H. Ghasemi, R. Mahmudi, An investigation on the tribological behavior of AZ91 and AZ91 + 3wt% RE magnesium alloys at elevated temperatures. Mater. Des. 54, 544–552 (2014)

    Article  CAS  Google Scholar 

  49. A. Zafari, H.M. Ghasemi, R. Mahmudi, Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 303, 98–108 (2013)

    Article  CAS  Google Scholar 

  50. B. Ma, H. Wang, Y. Wang, Q. Jiang, Fabrication of (TiB2–TiC) p/AZ91 magnesium matrix hybrid composite. J. Mater. Sci. 40, 4501–4504 (2005)

    Article  CAS  Google Scholar 

  51. B.M. Girish, B.M. Satish, S. Sarapure, Basawaraj, Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metall. Mater. Trans. A 47, 3193–3200 (2016)

    Article  CAS  Google Scholar 

  52. B. Mehrjou, R. Soltani, M.H. Sohi, M.J. Torkamany, Z. Valefi, H. Ghorbani, Laser surface treatment of AZ91 magnesium alloy presprayed with WC–Co. Surf. Eng. 32, 893–901 (2016)

    Article  CAS  Google Scholar 

  53. T.F. Kubatík, P. Ctibor, R. Mušálek, M. Janata, Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91. Mater. Tehnol. 51, 323–327 (2017)

    Article  CAS  Google Scholar 

  54. P.B. Srinivasan, C. Blawert, W. Dietzel, Dry sliding wear behaviour of plasma electrolytic oxidation coated AZ91 cast magnesium alloy. Wear 266, 1241–1247 (2009)

    Article  CAS  Google Scholar 

  55. S. Hao, M. Li, J. Chen, Surface microstructure and improved wear resistance of AZ91 magnesium alloy after high current pulsed electron beam treatment. Appl. Surf. Sci. (2016)

  56. Q. Chen, K. Li, Y. Liu, Z. Zhao, K. Tao, Q. Zhu, Effects of heat treatment on the wear behavior of surfacing AZ91 magnesium alloy. J. Mater. Res. 32, 2161–2168 (2017)

    Article  CAS  Google Scholar 

  57. L. Čížek, M. Greger, L. Dobrzański, I. Juřička, R. Kocich, L. Pawlica et al., Mechanical properties of magnesium alloy AZ91 at elevated temperatures. J. Achiev. Mater. Manuf. Eng. 18, 203–206 (2006)

    Google Scholar 

  58. D.G. Leo Prakash, D. Regener, W.J.J. Vorster, Effect of long term annealing on the microstructure of hpdc AZ91 Mg alloy: a quantitative analysis by image processing. Comput. Mater. Sci. 43, 759–766 (2008)

    Article  CAS  Google Scholar 

  59. T. Nishio, K. Kobayashi, A. Matsumoto, K. Ozaki, Semi-solid consolidation processing of rapidly solidified powders for fabrication of high strength AZ91 magnesium alloys. Mater. Trans. 43, 2110–2114 (2002)

    Article  CAS  Google Scholar 

  60. M. Mabuchi, M. Kobata, Y. Chino, H. Iwasaki, Tensile properties of directionally solidified AZ91 Mg alloy. Mater. Trans. 44, 436–439 (2003)

    Article  CAS  Google Scholar 

  61. E. Cerri, P. Leo, P.P. De Marco, Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting. J. Mater. Process. Technol. 189, 97–106 (2007)

    Article  CAS  Google Scholar 

  62. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, W. Ding, Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process. Mater. Des. 67, 1–8 (2015)

    Article  CAS  Google Scholar 

  63. F. Khomamizadeh, B. Nami, S. Khoshkhooei, Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metall. Mater. Trans. A 36, 3489–3494 (2005)

    Article  Google Scholar 

  64. S. Aravindan, P. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J. Magnes. Alloys 3, 52–62 (2015)

    Article  CAS  Google Scholar 

  65. W. Guo, Q.D. Wang, W.Z. Li, H. Zhou, L. Zhang, W.J. Liao, Enhanced microstructure homogeneity and mechanical properties of AZ91–SiC nanocomposites by cyclic closed-die forging. J. Compos. Mater. 51, 681–686 (2017)

    Article  CAS  Google Scholar 

  66. K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater. Charact. 124, 14–24 (2017)

    Article  CAS  Google Scholar 

  67. H. Yu, H. Yu, Z. Zhang, G. Min, B. You, Effects of SIC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites, in Proceedings of 18th International Conference on Composite Materials

  68. K. Deng, C. Wang, X. Wang, K. Wu, M. Zheng, Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Mater. Des. 38, 110–114 (2012)

    Article  CAS  Google Scholar 

  69. X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang et al., Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Mater. Sci. Eng. A 682, 491–500 (2017)

    Article  CAS  Google Scholar 

  70. Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 1193–1199 (2009)

    Article  CAS  Google Scholar 

  71. X.M. Wang, X.J. Wang, X.S. Hu, K. Wu, M.Y. Zheng, Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced Mg matrix composites. Acta Metal. Sin. (Engl. Lett.) 29, 940–950 (2016)

    Article  CAS  Google Scholar 

  72. N.M. Chelliah, H. Singh, M. Surappa, Microstructural evolution and strengthening behavior in in situ magnesium matrix composites fabricated by solidification processing. Mater. Chem. Phys. 194, 65–76 (2017)

    Article  CAS  Google Scholar 

  73. S. Fintová, L. Kunz, Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP, in IOP Conference Series: Materials Science and Engineering, p. 012159 (2014)

  74. M. Greger, R. Kocich, L. Čížek, Superplastic properties of magnesium alloys. J. Achiev. Mater. Manuf. Eng. 22, 83–86 (2007)

    Google Scholar 

  75. M. Greger, R. Kocich, L. Čížek, L. Dobrzański, M. Widomská, Influence of ECAP technology on the metal structures and properties. Arch. Mater. Sci. Eng. 28, 709–716 (2007)

    Google Scholar 

  76. Y. Tao, M.-Y. Zheng, X.-S. Hu, W. Kun, Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP. Trans. Nonferrous Met. Soc. China 20, s604–s607 (2010)

    Article  Google Scholar 

  77. C. Chung, R. Ding, Y. Chiu, W. Gao, Effect of ECAP on microstructure and mechanical properties of cast AZ91 magnesium alloy, in Journal of Physics: Conference Series, p. 012101 (2010)

  78. L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. J. Magnes. Alloys 4, 115–122 (2016)

    Article  CAS  Google Scholar 

  79. H.Y. Wang, Z.P. Yu, L. Zhang, C.G. Liu, M. Zha, C. Wang et al., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci. Rep. 5, 17100 (2015)

    Article  CAS  Google Scholar 

  80. Z.P. Yu, M. Zha, Z.H. Li, C. Wang, H.Y. Wang, Q.C. Jiang, Achieving fine grain structure and superplasticity in AZ91-0.4Sn magnesium alloy using short flow rolling process. Mater. Sci. Eng. A 695, 1–5 (2017)

    Article  CAS  Google Scholar 

  81. A.S. Al-Zubaydi, A.P. Zhilyaev, S.C. Wang, P.A. Reed, Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A 637, 1–11 (2015)

    Article  CAS  Google Scholar 

  82. W. Bochniak, P. Ostachowski, S. Jagiela, Plastic forming of AZ91 alloy using the KOBO method. J. Eng. Mater. Technol. Trans. ASME 138, 041002 (2016)

    Article  CAS  Google Scholar 

  83. J. Huang, H. Yu, Y. Li, H. Cui, J. He, J. Zhang, Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect. Mater. Des. 30, 440–444 (2009)

    Article  CAS  Google Scholar 

  84. X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu et al., Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Mater. Charact. 121, 222–230 (2016)

    Article  CAS  Google Scholar 

  85. Y. Li, Y. Chen, H. Cui, B. **ong, J. Zhang, Microstructure and mechanical properties of spray-formed AZ91 magnesium alloy. Mater. Charact. 60, 240–245 (2009)

    Article  CAS  Google Scholar 

  86. C. Meng, Z. Chen, G. Li, P. Dong, Effect of laser surface melting on high temperature tensile properties of AZ91D magnesium alloy. J. Alloys Compd. 711, 258–266 (2017)

    Article  CAS  Google Scholar 

  87. P. Mónica, P.M. Bravo, D. Cárdenas, Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties. J. Mater. Process. Technol. 239, 297–302 (2017)

    Article  CAS  Google Scholar 

  88. J. Tkacz, J. Minda, S. Fintová, J. Wasserbauer, Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy. Materials 9, 1–14 (2016)

    Article  CAS  Google Scholar 

  89. J. Chen, J. Wang, E. Han, W. Ke, ESEM observation of the process of hydrogen generation around the micro-droplets forming on AZ91 magnesium alloy. Electrochem. Commun. 10, 577–581 (2008)

    Article  CAS  Google Scholar 

  90. J. Li, W. Sun, B. Hurley, A.A. Luo, R.G. Buchheit, Cu redistribution study during the corrosion of AZ91 using a rotating ring-disk collection experiment. Corros. Sci. 112, 760–764 (2016)

    Article  CAS  Google Scholar 

  91. L. Wang, B.-P. Zhang, T. Shinohara, Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Mater. Des. 31, 857–863 (2010)

    Article  CAS  Google Scholar 

  92. I. Kot, H. Krawiec, The use of a multiscale approach in electrochemistry to study the corrosion behaviour of as-cast AZ91 magnesium alloy. J. Solid State Electrochem. 19, 2379–2390 (2015)

    Article  CAS  Google Scholar 

  93. M. Hatakeyama, K. Shimono, D. Iwashima, S. Saikawa, S. Sunada, The role of β (Al12Mg17) phase on corrosion behavior of the AZ91 alloy in NaCl aqueous solution. Arch. Metall. Mater. 62, 155–158 (2017)

    Article  CAS  Google Scholar 

  94. L.-N. Zhang, R. Jia, D. Li, W. Zhang, F. Guo, Effect of intermetallic phases on corrosion initiation of AZ91 alloy with rare earth Y addition. J. Mater. Sci. Technol. 31, 504–511 (2015)

    Article  CAS  Google Scholar 

  95. J. Chen, J.Q. Wang, E.H. Han, W. Ke, D.W. Shoesmith, Effect of hydrogen on corrosion and stress corrosion cracking of AZ91 alloy in aqueous solutions. Acta Metal. Sin. (Engl. Lett.) 29, 1–7 (2016)

    Article  CAS  Google Scholar 

  96. M. Anik, P. Avci, A. Tanverdi, I. Celikyurek, B. Baksan, R. Gurler, Effect of the eutectic phase mixture on the anodic behavior of alloy AZ91. Mater. Des. 27, 347–355 (2006)

    Article  CAS  Google Scholar 

  97. S. Salman, R. Ichino, M. Okido, A comparative electrochemical study of AZ31 and AZ91 magnesium alloy. Int. J. Corros. 2010, 1–7 (2010)

    Article  CAS  Google Scholar 

  98. I. Singh, M. Singh, S. Das, A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. J. Magnes. Alloys 3, 142–148 (2015)

    Article  CAS  Google Scholar 

  99. S. Hao, M. Li, Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment. Nucl. Instrum. Methods Phys. Res. Sect. B 375, 1–4 (2016)

    Article  CAS  Google Scholar 

  100. C. Liu, J. Liang, J. Zhou, Q. Li, Z. Peng, L. Wang, Characterization and corrosion behavior of plasma electrolytic oxidation coated AZ91-T6 magnesium alloy. Surf. Coat. Technol. 304, 179–187 (2016)

    Article  CAS  Google Scholar 

  101. M. Strzelecka, J. Iwaszko, M.A. Malik, Corrosion resistance of AZ91 magnesium alloy after laser remelting treatment. J. Wuhan Univ. Technol. Mater. Sci. Ed. 31, 1075–1080 (2016)

    Article  CAS  Google Scholar 

  102. K. Borko, S. Fintová, B. Hadzima, Linear potentiodynamic characterization of ECAPed biocompatible AZ91 magnesium alloy, in Materials Science Forum, ed. MSF, vol. 891, pp. 404–408 (2017)

  103. T.J. Luo, Y.S. Yang, Y.J. Li, X.G. Dong, Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy. Electrochim. Acta 54, 6433–6437 (2009)

    Article  CAS  Google Scholar 

  104. T.J. Luo, Y.S. Yang, Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium. Mater. Des. 32, 5043–5048 (2011)

    Article  CAS  Google Scholar 

  105. Y.G. Ko, K.M. Lee, D.H. Shin, Electrochemical corrosion properties of AZ91 Mg alloy via plasma electrolytic oxidation and subsequent annealing. Mater. Trans. 52, 1697–1700 (2011)

    Article  CAS  Google Scholar 

  106. I. Ghayad, N. Girgis, A. Azim, Effect of some alloying elements and heat treatment on the corrosion behavior of AZ91 and ZM60 magnesium alloys. Int. J. Metall. Mater. Sci. Eng. 3, 21–32 (2013)

    Google Scholar 

  107. R. Shabadi, R. Ambat, E.S. Dwarakadasa, AZ91C magnesium alloy modified by Cd. Mater. Des. 53, 445–451 (2014)

    Article  CAS  Google Scholar 

  108. Y. Zhan, H.-Y. Zhao, X.-D. Hu, D.-Y. Ju, Effect of elements Zn, Sn and In on microstructures and performances of AZ91 alloy. Trans. Nonferrous Met. Soc. China 20, s318–s323 (2010)

    Article  Google Scholar 

  109. H. Wang, Y. Li, F. Wang, Influence of cerium on passivity behavior of wrought AZ91 alloy. Electrochim. Acta 54, 706–713 (2008)

    Article  CAS  Google Scholar 

  110. Y. Song, Z. Wang, Y. Liu, M. Yang, Q. Qu, Influence of erbium, cerium on the stress corrosion cracking behavior of AZ91 alloy in humid atmosphere. Adv. Eng. Mater. 19, 1700021 (2017)

    Article  CAS  Google Scholar 

  111. M. Gobara, M. Shamekh, R. Akid, Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides. J. Magnes. Alloys 3, 112–120 (2015)

    Article  CAS  Google Scholar 

  112. M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, A.E.W. Jarfors, M. Wessén et al., On the microstructure and corrosion behavior of AZ91/SiC composites produced by rheocasting. Mater. Chem. Phys. 180, 29–37 (2016)

    Article  CAS  Google Scholar 

  113. B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, Corrosion and wear of PEO coated AZ91/SiC composites. Surf. Coat. Technol. 309, 1023–1032 (2017)

    Article  CAS  Google Scholar 

  114. D.Y. Hwang, Y.M. Kim, D.-Y. Park, B. Yoo, D.H. Shin, Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation. Electrochim. Acta 54, 5479–5485 (2009)

    Article  CAS  Google Scholar 

  115. D. Veys-Renaux, E. Rocca, G. Henrion, Micro-arc oxidation of AZ91 Mg alloy: an in situ electrochemical study. Electrochem. Commun. 31, 42–45 (2013)

    Article  CAS  Google Scholar 

  116. D. Veys-Renaux, E. Rocca, J. Martin, G. Henrion, Initial stages of AZ91 Mg alloy micro-arc anodizing: growth mechanisms and effect on the corrosion resistance. Electrochim. Acta 124, 36–45 (2014)

    Article  CAS  Google Scholar 

  117. M.I. Ansari, D.G. Thakur, Influence of surfactant: using electroless ternary nanocomposite coatings to enhance the surface properties on AZ91 magnesium alloy. Surf. Interfaces 7, 20–28 (2017)

    Article  CAS  Google Scholar 

  118. S. Zhang, Q. Li, X. Yang, X. Zhong, Y. Dai, F. Luo, Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni–TiO2 composite coating. Mater. Charact. 61, 269–276 (2010)

    Article  CAS  Google Scholar 

  119. M. Ghamari, A.A. Amadeh, Wear and corrosion resistance of AZ91 magnesium alloy coated by pulsed current electrodeposited Ni–Al2O3 nanocomposite. Trans. Inst. Met. Finish. 95, 114–120 (2017)

    Article  CAS  Google Scholar 

  120. S.H. Adsul, T. Siva, S. Sathiyanarayanan, S.H. Sonawane, R. Subasri, Self-healing ability of nanoclay-based hybrid sol–gel coatings on magnesium alloy AZ91D. Surf. Coat. Technol. 309, 609–620 (2017)

    Article  CAS  Google Scholar 

  121. V. Barranco, N. Carmona, J.C. Galván, M. Grobelny, L. Kwiatkowski, M.A. Villegas, Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog. Org. Coat. 68, 347–355 (2010)

    Article  CAS  Google Scholar 

  122. R.L. Zhu, B. Wei, X.T. Hu, Z.X. Chen, D.X. Nie, Effect of curing methods of silane film on corrosion resistance of AZ91 magnesium alloy. Shenyang Gongye Daxue Xuebao/J. Shenyang Univ. Technol. 38, 36–41 (2016)

    Google Scholar 

  123. P.S. Correa, C.F. Malfatti, D.S. Azambuja, Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions. Prog. Org. Coat. 72, 739–747 (2011)

    Article  CAS  Google Scholar 

  124. H. Altun, S. Sen, The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy. Mater. Des. 27, 1174–1179 (2006)

    Article  CAS  Google Scholar 

  125. M. Tacikowski, M. Betiuk, K. Cymerman, M. Pisarek, I. Pokorska, T. Wierzchoń, High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method. J. Magnes. Alloys 2, 265–273 (2014)

    Article  CAS  Google Scholar 

  126. H.H. Elsentriecy, K. Azumi, H. Konno, Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy. Electrochim. Acta 53, 4267–4275 (2008)

    Article  CAS  Google Scholar 

  127. H.H. Elsentriecy, K. Azumi, H. Konno, Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochim. Acta 53, 1006–1012 (2007)

    Article  CAS  Google Scholar 

  128. T. Zhu, W. Gao, Formation of intermetallic compound coating on magnesium AZ91 cast alloy, in IOP Conference Series: Materials Science and Engineering, p. 012024 (2009)

  129. S.R. Kiahosseini, A. Afshar, M.M. Larijani, M. Yousefpour, Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl. Surf. Sci. 401, 172–180 (2017)

    Article  CAS  Google Scholar 

  130. Y. Ishibashi, M. Nose, M. Hatakeyama, S. Sunada, Effects of aluminum sputtering on the corrosion resistance of AZ91 alloy. Arch. Metall. Mater. 60, 953–955 (2015)

    Article  CAS  Google Scholar 

  131. C. Liu, Y. **n, X. Tian, J. Zhao, P.K. Chu, Corrosion resistance of titanium ion implanted AZ91 magnesium alloy. J. Vac. Sci. Technol. A 25, 334–339 (2007)

    Article  CAS  Google Scholar 

  132. N. El Mahallawy, M. Shoeib, M. Abouelenain, AZ91 magnesium alloys: anodizing of using environmental friendly electrolytes. J. Surf. Eng. Mater. Adv. Technol. 1, 62 (2011)

    Google Scholar 

  133. P.C. Banerjee, R.P. Woo, S.M. Grayson, A. Majumder, R. Raman, Influence of zeolite coating on the corrosion resistance of AZ91D magnesium alloy. Materials 7, 6092–6104 (2014)

    Article  CAS  Google Scholar 

  134. L. Feng, Y. Zhu, J. Wang, X. Shi, One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance. Appl. Surf. Sci. 422, 566–573 (2017)

    Article  CAS  Google Scholar 

  135. D. Seifzadeh, H. Basharnavaz, Corrosion protection of AZ91 magnesium alloy in cooling systems. Trans. Nonferrous Met. Soc. China 23, 2577–2584 (2013)

    Article  CAS  Google Scholar 

  136. X. Lu, Y. Zuo, X. Zhao, Y. Tang, The influence of aluminum tri-polyphosphate on the protective behavior of Mg-rich epoxy coating on AZ91D magnesium alloy. Electrochim. Acta 93, 53–64 (2013)

    Article  CAS  Google Scholar 

  137. J. Tkacz, M. Zmrzlý, J. Wasserbauer, Effect of corrosion on the mechanical properties of magnesium alloy AZ91. Chem. Pap. 105, 854855 (2011)

    Google Scholar 

  138. C. Liu, Y. **n, X. Tian, P.K. Chu, Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids. Thin Solid Films 516, 422–427 (2007)

    Article  CAS  Google Scholar 

  139. E. Schick, D. Regener, Fracture mechanics testing of magnesium alloy ingots and die castings, in ECF13, San Sebastian 2000 (2013)

  140. G. Murugan, K. Raghukandan, U.T.S. Pillai, B.C. Pai, Influence of transverse load on the high cycle fatigue behaviour of low pressure cast AZ91 magnesium alloy. Mater. Des. 30, 4211–4217 (2009)

    Article  CAS  Google Scholar 

  141. G. Murugan, K. Raghukandan, U.T.S. Pillai, B.C. Pai, K. Mahadevan, High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Mater. Des. 30, 2636–2641 (2009)

    Article  CAS  Google Scholar 

  142. M. Korzynski, T. Zarski, K. Korzynska, Surface layer condition and the fatigue strength of an AZ91 alloy after ball peening. J. Mater. Process. Technol. 211, 1982–1988 (2011)

    Article  CAS  Google Scholar 

  143. S. Fintová, L. Kunz, Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 42, 219–228 (2015)

    Article  CAS  Google Scholar 

  144. M. Azadi, G.H. Farrahi, G. Winter, W. Eichlseder, Fatigue lifetime of AZ91 magnesium alloy subjected to cyclic thermal and mechanical loadings. Mater. Des. 53, 639–644 (2014)

    Article  CAS  Google Scholar 

  145. Y.C. Lin, X.-M. Chen, Z.-H. Liu, J. Chen, Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy. Int. J. Fatigue 48, 122–132 (2013)

    Article  CAS  Google Scholar 

  146. M. Preciado, P. Bravo, D. Cárdenas, Influence of porosity in the fatigue behavior of the high-pressure die-casting AZ91 magnesium alloys. J. Eng. Mater. Technol. 138, 041006 (2016)

    Article  CAS  Google Scholar 

  147. A. Bag, W. Zhou, D. Taplin, E. Dwarakadasa, Fatigue behaviour of AZ91D magnesium alloy and its composite reinforced with SiC. Magnes. Technol. 2000, 345–348 (2000)

    Google Scholar 

  148. W. Riehemann, Z. Trojanová, A. Mielczarek, Fatigue in magnesium alloy AZ91-γAlumina fiber composite studied by internal friction measurements. Procedia Eng. 2, 2151–2160 (2010)

    Article  Google Scholar 

  149. S. Barbagallo, E. Cerri, Evaluation of the KIC and JIC fracture parameters in a sand cast AZ91 magnesium alloy. Eng. Fail. Anal. 11, 127–140 (2004)

    Article  CAS  Google Scholar 

  150. A. Prasad, Z. Shi, A. Atrens, Influence of Al and Y on the ignition and flammability of Mg alloys. Corros. Sci. 55, 153–163 (2012)

    Article  CAS  Google Scholar 

  151. R. Mahmudi, F. Kabirian, Z. Nematollahi, Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91 + 2RE magnesium alloys. Mater. Des. 32, 2583–2589 (2011)

    Article  CAS  Google Scholar 

  152. Y. Turen, Effect of Sn addition on microstructure, mechanical and casting properties of AZ91 alloy. Mater. Des. 49, 1009–1015 (2013)

    Article  CAS  Google Scholar 

  153. H. Mirzadeh, Constitutive analysis of Mg–Al–Zn magnesium alloys during hot deformation. Mech. Mater. 77, 80–85 (2014)

    Article  Google Scholar 

  154. F. Li, W.Y. Peh, V. Nagarajan, M.K. Ho, A. Danno, B.W. Chua et al., Development of non-flammable high strength AZ91 + Ca alloys via liquid forging and extrusion. Mater. Des. 99, 37–43 (2016)

    Article  CAS  Google Scholar 

  155. Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček et al., Mechanical and fracture properties of an AZ91 magnesium alloy reinforced by Si and SiC particles. Compos. Sci. Technol. 69, 2256–2264 (2009)

    Article  CAS  Google Scholar 

  156. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou et al., Hot deformation behavior and workability characteristics of bimodal size SiCp/AZ91 magnesium matrix composite with processing map. Mater. Des. 64, 177–184 (2014)

    Article  CAS  Google Scholar 

  157. S. Hassan, K. Ho, M. Gupta, Increasing elastic modulus, strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper. Mater. Lett. 58, 2143–2146 (2004)

    Article  CAS  Google Scholar 

  158. D.H. Cho, J.H. Nam, B.W. Lee, S.O. Yim, I.M. Park, Thermal expansion properties of carbon nanotube/silicon carbide particle-reinforced magnesium composites fabricated by squeeze infiltration. Met. Mater. Int. 22, 332–339 (2016)

    Article  CAS  Google Scholar 

  159. Q. Tan, N. Mo, B. Jiang, F. Pan, A. Atrens, M.X. Zhang, Combined influence of Be and Ca on improving the high-temperature oxidation resistance of the magnesium alloy Mg–9Al–1Zn. Corros. Sci. 122, 1–11 (2017)

    Article  CAS  Google Scholar 

  160. F. Kabirian, R. Mahmudi, Impression creep behavior of a cast AZ91 magnesium alloy. Metall. Mater. Trans. A 40, 116–127 (2009)

    Article  CAS  Google Scholar 

  161. E. Gariboldi, Q. Ge, N. Lecis, S. Spigarelli, M. El Mehtedi, Creep behaviour of deep cryogenic treated AZ91 magnesium alloy. Metall. Sci. Technol. 30, 19–27 (2013)

    Google Scholar 

  162. H. Leitner, W. Eichlseder, Creep and relaxation behaviour of Mg–Al based die cast alloys AZ91 and AE44, in Proceedings of EMC, p. 1 (2009)

  163. A. Srinivasan, K. Ajithkumar, J. Swaminathan, U. Pillai, B. Pai, Creep behavior of AZ91 magnesium alloy. Procedia Eng. 55, 109–113 (2013)

    Article  CAS  Google Scholar 

  164. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, R.O. Scattergood, Effects of microstructure and processing methods on creep behavior of AZ91 magnesium alloy. J. Mater. Eng. Perform. 25, 3697–3709 (2016)

    Article  CAS  Google Scholar 

  165. A. Viswanath, H. Dieringa, K.K. Ajith Kumar, U.T.S. Pillai, B.C. Pai, Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites. J. Magnes. Alloys 3, 16–22 (2015)

    Article  CAS  Google Scholar 

  166. A.K.S. Bankoti, A.K. Mondal, H. Dieringa, B.C. Ray, S. Kumar, Impression creep behaviour of squeeze-cast Ca and Sb added AZ91 magnesium alloy. Mater. Sci. Eng. A 673, 332–345 (2016)

    Article  CAS  Google Scholar 

  167. C.S. Goh, K.S. Soh, P.H. Oon, B.W. Chua, Effect of squeeze casting parameters on the mechanical properties of AZ91–Ca Mg alloys. Mater. Des. 31(Supplement 1), S50–S53 (2010)

    Article  CAS  Google Scholar 

  168. L. Čížek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański, Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. J. Mater. Process. Technol. 157–158, 466–471 (2004)

    Article  CAS  Google Scholar 

  169. M. Suresh, A. Srinivasan, U. Pillai, B. Pai, Mechanism for grain refinement and mechanical properties of AZ91 Mg alloy by carbon inoculation. Procedia Eng. 55, 93–97 (2013)

    Article  CAS  Google Scholar 

  170. Z. Songli, Z. Yutao, C. Gang, Fabrications and mechanical properties of in situ AZ91 alloy matrix composites. http://www.paper.edu.cn

  171. X. Zhou, D. Su, C. Wu, L. Liu, Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J. Nanomater. 2012, 83 (2012)

    Google Scholar 

  172. L. Elen, H. Zengin, Y. Turen, M.E. Turan, Y. Sun, H. Ahlatci, Effects of bismuth (bi) additions on microstructure and mechanical properties of AZ91 alloy, in Metal 2015 (Brno, Czech Republic, EU, 2015)

  173. M. Strzelecka, J. Iwaszko, M. Malik, S. Tomczyński, Surface modification of the AZ91 magnesium alloy. Arch. Civ. Mech. Eng. 15, 854–861 (2015)

    Article  Google Scholar 

  174. F. Li, W.Y. Peh, V. Nagarajan, M.K. Ho, A. Danno, B.W. Chua et al., Development of non-flammable high strength AZ91 + Ca alloys via liquid forging and extrusion. Mater. Des. 99, 37–43 (2016)

    Article  CAS  Google Scholar 

  175. A. Boby, K. Ravikumar, U. Pillai, B. Pai, Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy. Procedia Eng. 55, 98–102 (2013)

    Article  CAS  Google Scholar 

  176. A. Boby, A. Srinivasan, U. Pillai, B. Pai, Mechanical and wear properties of Sb-and Y-added Mg-9Al-1Zn (AZ91) alloy. Metall. Mater. Trans. A 46, 4234–4246 (2015)

    Article  CAS  Google Scholar 

  177. S.V. Muley, S.P. Singh, P. Sinha, P.P. Bhingole, G.P. Chaudhari, Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior. Mater. Des. 53, 475–481 (2014)

    Article  CAS  Google Scholar 

  178. M.I. Ansari, D.G. Thakur, A high performance of ENi–P coatings on mechanical and tribological properties with influence of bath pH on AZ91 magnesium alloy. J. Fail. Anal. Prev. 17, 100–106 (2017)

    Article  Google Scholar 

  179. M. Khodsetan, G. Faraji, V. Tavakkoli, K. Abrinia, Microstructure and mechanical properties of AZ91 magnesium cup processed by a combined backward extrusion and constrained ironing method. Int. J. Adv. Des. Manuf. Technol. 10, 23–30 (2017)

    Google Scholar 

  180. B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, Corrosion and wear of PEO coated AZ91/SiC composites. Surf. Coat. Technol. 309, 1023–1032 (2017)

    Article  CAS  Google Scholar 

  181. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50, 1–78 (2005)

    Article  CAS  Google Scholar 

  182. V.V. Ramalingam, P. Ramasamy, Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using polynomial: radial basis function. Trans. Indian Inst. Met. 70, 2575–2589 (2017)

    Article  CAS  Google Scholar 

  183. C. Jayakarthick, A. Povendhan, R.V. Vignesh, R. Padmanaban, Analysing the influence of FSP process parameters on IGC susceptibility of AA5083 using Sugeno–Fuzzy model, in IOP Conference Series: Materials Science and Engineering, p. 012045 (2018)

  184. B.K. Murugan, V. Balusamy, R. Padmanaban, R. Vaira Vignesh, Study of the effect of parameters in friction surfacing of Monel over Mild Steel using linear–radial basis function model. Mater. Today Proc. 5, 8604–8611 (2018)

    Article  CAS  Google Scholar 

  185. R.V. Vignesh, R. Padmanaban, Influence of friction stir processing parameters on the wear resistance of aluminium alloy AA5083. Mater. Today Proc. 5, 7437–7446 (2018)

    Article  CAS  Google Scholar 

  186. R.V. Vignesh, R. Padmanaban, M. Arivarasu, S. Thirumalini, J. Gokulachandran, M.S.S.S. Ram, Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates, in IOP Conference Series: Materials Science and Engineering, p. 012208 (2016)

  187. R.V. Vignesh, R. Padmanaban, Modelling of peak temperature during friction stir processing of magnesium alloy AZ91, in IOP Conference Series: Materials Science and Engineering, p. 012019 (2018)

  188. R.V. Vignesh, R. Padmanaban, M. Arivarasu, K. Karthick, A.A. Sundar, J. Gokulachandran, Analysing the strength of friction stir spot welded joints of aluminium alloy by fuzzy logic, in IOP Conference Series: Materials Science and Engineering, p. 012136 (2016)

  189. R.V. Vignesh, R. Padmanaban, Modelling tensile strength of friction stir welded aluminium alloy 1100 using fuzzy logic, in 2017 11th International Conference on Intelligent Systems and Control (ISCO), pp. 449–456 (2017)

  190. V. Barath, R.V. Vignesh, R. Padmanaban, Analysing the strength of friction stir welded dissimilar aluminium alloys using Sugeno Fuzzy model, in IOP Conference Series: Materials Science and Engineering, p. 012043 (2018)

  191. P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater. Sci. Eng. A 528, 6469–6477 (2011)

    Article  CAS  Google Scholar 

  192. P. Asadi, M. Akbari, H. Karimi-Nemch, 12—Simulation of friction stir welding and processing, in Advances in Friction-Stir Welding and Processing (Woodhead Publishing, 2014), pp. 499–542

  193. J.D. Robson, S. Cui, Z.W. Chen, Incipient melting during friction stir processing of AZ91 magnesium castings. Mater. Sci. Eng. A 527, 7299–7304 (2010)

    Article  CAS  Google Scholar 

  194. P. Cavaliere, P.P. De Marco, Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast. J. Mater. Process. Technol. 184, 77–83 (2007)

    Article  CAS  Google Scholar 

  195. W.H. Loke, R. Ibrahim, S. Lathabai, Improving the microstructure and mechanical properties of a cast Mg–9AL–1Zn alloy using friction stir processing, in Materials Science Forum, vol. 838–839, pp. 214–219 (2016)

  196. Z. Lu, D. Zhang, Microstructure and mechanical properties of a fine-grained AZ91 magnesium alloy prepared by multi-pass friction stir processing, in Materials Science Forum, vol. 850, pp. 778–783 (2016)

  197. Z. Lu, D. Zhang, W. Zhang, C. Qiu, Microstructure and properties of AZ91 magnesium alloy prepared by multi-pass friction stir processing under different cooling conditions. Hangkong Cailiao Xuebao/J. Aeronaut. Mater. 36, 33–38 (2016)

    CAS  Google Scholar 

  198. A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scripta Mater. 56, 397–400 (2007)

    Article  CAS  Google Scholar 

  199. V. Jain, R.S. Mishra, A.K. Gupta, Gouthama, Study of β-precipitates and their effect on the directional yield asymmetry of friction stir processed and aged AZ91C alloy. Mater. Sci. Eng. A 560, 500–509 (2013)

    Article  CAS  Google Scholar 

  200. D. Zhang, S. Wang, C. Qiu, W. Zhang, Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing. Mater. Sci. Eng. A 556, 100–106 (2012)

    Article  CAS  Google Scholar 

  201. F. Chai, D. Zhang, Y. Li, W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing. Mater. Sci. Eng. A 568, 40–48 (2013)

    Article  CAS  Google Scholar 

  202. F. Chai, D. Zhang, W. Zhang, Y. Li, Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy. Mater. Sci. Eng. A 590, 80–87 (2014)

    Article  CAS  Google Scholar 

  203. J.A. del Valle, P. Rey, D. Gesto, D. Verdera, J.A. Jiménez, O.A. Ruano, Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater. Sci. Eng. A 628, 198–206 (2015)

    Article  CAS  Google Scholar 

  204. N. Bhadouria, L. Thakur, P. Kumar, N. Arora, An investigation of normal and submerged condition on microstructural and tribological properties of friction stir processed AZ91-D magnesium alloy. Can. Metall. Q. 56, 94–103 (2017)

    Article  CAS  Google Scholar 

  205. D. Ni, D. Wang, A. Feng, G. Yao, Z. Ma, Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scripta Mater. 61, 568–571 (2009)

    Article  CAS  Google Scholar 

  206. P. Cavaliere, P.P. De Marco, Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting. Mater. Charact. 58, 226–232 (2007)

    Article  CAS  Google Scholar 

  207. D.R. Ni, D. Wang, A.H. Feng, G. Yao, Z.Y. Ma, Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scripta Mater. 61, 568–571 (2009)

    Article  CAS  Google Scholar 

  208. P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51, 247–260 (2010)

    Article  Google Scholar 

  209. M. Abbasi, B. Bagheri, M. Dadaei, H. Omidvar, M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface. Int. J. Adv. Manuf. Technol. 77, 2051–2058 (2015)

    Article  Google Scholar 

  210. D. Khayyamin, A. Mostafapour, R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater. Sci. Eng. A 559, 217–221 (2013)

    Article  CAS  Google Scholar 

  211. S. Nakagawa, A. Afrinaldi, T. Kakiuchi, Y. Uematsu, A. Ohtani, K. Kumabe et al., Microstructural modification of AZ91 magnesium alloy using friction stir processing and carbon fibers, in Materials Science Forum, pp. 55–58 (2017)

  212. D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing. J. Magnes. Alloys 4, 314–318 (2016)

    Article  CAS  Google Scholar 

  213. F. Witte, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005)

    Article  CAS  Google Scholar 

  214. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth et al., In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005)

    Article  CAS  Google Scholar 

  215. L. Choudhary, R.K. SinghRaman, Mechanical integrity of magnesium alloys in a physiological environment: Slow strain rate testing based study. Eng. Fract. Mech. 103, 94–102 (2013)

    Article  Google Scholar 

  216. L. Choudhary, J. Szmerling, R. Goldwasser, R.K.S. Raman, Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment. Procedia Eng. 10, 518–523 (2011)

    Article  CAS  Google Scholar 

  217. F. Witte, In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27, 1013–1018 (2006)

    Article  CAS  Google Scholar 

  218. A.M. Fekry, Electrochemical corrosion behaviour of magnesium and titanium alloys in simulated body fluid. Electrochim. Acta 54, 7280–7285 (2009)

    Article  CAS  Google Scholar 

  219. M.B. Kannan, R.K.S. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29, 2306–2314 (2008)

    Article  CAS  Google Scholar 

  220. M. Razavi, M.H. Fathi, M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A 527, 6938–6944 (2010)

    Article  CAS  Google Scholar 

  221. M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Mater Sci Eng C Mater Biol Appl 48, 21–27 (2015)

    Article  CAS  Google Scholar 

  222. B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q. Dong, J.X. Zheng et al., AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J. Mater. Sci. Technol. 32, 858–864 (2016)

    Article  Google Scholar 

  223. J. Yang, Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39, 1857–1871 (2011)

    Article  Google Scholar 

  224. P. Tian, X. Liu, Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen Biomater 2, 135–151 (2015)

    Article  CAS  Google Scholar 

  225. Y. **n, C. Liu, W. Zhang, J. Jiang, G. Tang, X. Tian et al., Electrochemical behavior Al2O3/Al coated surgical AZ91 magnesium alloy in simulated body fluids. J. Electrochem. Soc. 155, C178–C182 (2008)

    Article  CAS  Google Scholar 

  226. S. Grassini, Electrochemical characterization of magnesium bioabsorbable implants, in IEEE International Symposium on Medical Measurements and Applications Proceedings (2014)

  227. T. Mukhametkaliyev, M. Surmeneva, A. Vladescu, C.M. Cotrut, M. Braic, M. Dinu et al., A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mater. Sci. Eng. C 75, 95–103 (2017)

    Article  CAS  Google Scholar 

  228. Y. **n, C. Liu, K. Huo, G. Tang, X. Tian, P.K. Chu, Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy. Surf. Coat. Technol. 203, 2554–2557 (2009)

    Article  CAS  Google Scholar 

  229. Z.M. Rosli, Z.B. Mahamud, J.M. Juoi, N. Nafarizal, K.W. Loon, Y. Yusuf, H.E. Ab Maulod, Corrosion behavior of AZ91 Mg-alloy coated with AlN and TiN in NaCl and Hank’s solution. Adv. Mater. Res. 626, 275–279 (2012)

    Article  CAS  Google Scholar 

  230. M.B. Kannan, Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Mater. Lett. 76, 109–112 (2012)

    Article  CAS  Google Scholar 

  231. M.B. Kannan, S. Liyanaarachchi, Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications. Mater. Chem. Phys. 142, 350–354 (2013)

    Article  CAS  Google Scholar 

  232. M.B. Kannan, O. Wallipa, Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications—an in vitro corrosion study. Mater. Sci. Eng. C 33, 675–679 (2013)

    Article  CAS  Google Scholar 

  233. M. Razavi, M. Fathi, O. Savabi, S. Mohammad Razavi, B. Hashemi Beni, D. Vashaee et al., Surface modification of magnesium alloy implants by nanostructured bredigite coating. Mater. Lett. 113, 174–178 (2013)

    Article  CAS  Google Scholar 

  234. R. Rojaee, M. Fathi, K. Raeissi, Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater. Sci. Eng. C 33, 3817–3825 (2013)

    Article  CAS  Google Scholar 

  235. R. Walter, M.B. Kannan, Y. He, A. Sandham, Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Appl. Surf. Sci. 279, 343–348 (2013)

    Article  CAS  Google Scholar 

  236. A. Tahmasebifar, S.M. Kayhan, Z. Evis, A. Tezcaner, H. Çinici, M. Koç, Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. J. Alloys Compd. 687, 906–919 (2016)

    Article  CAS  Google Scholar 

  237. E.K. Brooks, M.E. Tobias, S. Yang, L.B. Bone, M.T. Ehrensberger, Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy. J. Biomed. Mater. Res. Part B Appl. Biomater. 104, 253–262 (2016)

    Article  CAS  Google Scholar 

  238. J.D. Majumdar, U. Bhattacharyya, A. Biswas, I. Manna, Studies on thermal oxidation of Mg-alloy (AZ91) for improving corrosion and wear resistance. Surf. Coat. Technol. 202, 3638–3642 (2008)

    Article  CAS  Google Scholar 

  239. J. Feng, Y. Chen, X. Liu, T. Liu, L. Zou, Y. Wang et al., In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties. Mater. Chem. Phys. 143, 322–329 (2013)

    Article  CAS  Google Scholar 

  240. D. Gopi, P.R. Bhalaji, S. Ramya, L. Kavitha, Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution. J. Ind. Eng. Chem. 23, 218–227 (2015)

    Article  CAS  Google Scholar 

  241. L. Xu, In vitro and in vivo evaluation of the surface bioactivity of calcium phosphate coated magnesium alloy. Biomaterials 30, 1512–1523 (2009)

    Article  CAS  Google Scholar 

  242. A. Francis, S. Virtanen, M.C. Turhan, A.R. Boccaccini, Investigating the effect of salicylate salt in enhancing the corrosion resistance of AZ91 magnesium alloy for biomedical applications. BioNanoMaterials 17, 113–119 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanaban Ramasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D. et al. Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review. Met. Mater. Int. 26, 409–430 (2020). https://doi.org/10.1007/s12540-019-00346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00346-8

Keywords

Navigation