Log in

Distal renal tubular acidosis: genetic causes and management

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Distal renal tubular acidosis (dRTA) is a kidney tubulopathy that causes a state of normal anion gap metabolic acidosis due to impairment of urine acidification. This review aims to summarize the etiology, pathophysiology, clinical findings, diagnosis and therapeutic approach of dRTA, with emphasis on genetic causes of dRTA.

Data sources

Literature reviews and original research articles from databases, including PubMed and Google Scholar. Manual searching was performed to identify additional studies about dRTA.

Results

dRTA is characterized as the dysfunction of the distal urinary acidification, leading to metabolic acidosis. In pediatric patients, the most frequent etiology of dRTA is the genetic alteration of genes responsible for the codification of distal tubule channels, whereas, in adult patients, dRTA is more commonly secondary to autoimmune diseases, use of medications and uropathies. Patients with dRTA exhibit failure to thrive and important laboratory alterations, which are used to define the diagnosis. The oral alkali and potassium supplementation can correct the biochemical defects, improve clinical manifestations and avoid nephrolithiasis and nephrocalcinosis.

Conclusions

dRTA is a multifactorial disease leading to several clinical manifestations. Clinical and laboratory alterations can be corrected by alkali replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simões e Silva AC, Lima C, Souto M. Renal tubular acidosis in Pediatrics. J Bras Nefrol. 2007;29:38–47.

    Google Scholar 

  2. Trepiccione F, Prosperi F, de la Motte L, Hubner CA, Chambrey R, Eladari D, Capasso G. New findings on the pathogenesis of distal renal tubular acidosis. Kidney Dis. 2017;3:98–105.

    Google Scholar 

  3. Shah M. Renal tubular acidosis. In: Ghosh A, Mitra M, Choudhury J, editors. Treatment and prognosis in pediatrics.New Delhi: Jaypee Brothers Medical Publishers; 2013. pp. 269–72.

    Google Scholar 

  4. Rodríguez-Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13:2160–70.

    PubMed  Google Scholar 

  5. Mohebbi N, Wagner C. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J Nephrol. 2018;31:511–22.

    CAS  PubMed  Google Scholar 

  6. Gil-Peña H, Mejía N, Santos F. Renal tubular acidosis. J Pediatr. 2014;164:691–8.

    PubMed  Google Scholar 

  7. Carroll W. Nephrology and hepatology: prepare for the MRCPCH. In: Broodbank D, Christian T, editors. Renal tubular disorders. Amsterdam: Elsevier Health Sciences; 2016. p. 278–288.

    Google Scholar 

  8. Pereira P, Miranda D, Oliveira E, Simões e Silva AC. Molecular pathophysiology of renal tubular acidosis. Curr Genom. 2009;10:51–9.

    CAS  Google Scholar 

  9. Rodríguez-Soriano J. New insights into the pathogenesis of renal tubular acidosis—from functional to molecular studies. Pediatr Nephrol. 2000;14:1121–36.

    PubMed  Google Scholar 

  10. Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol. 2015;10:305–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner C, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Eur J Physiol. 2009;458:137–56.

    CAS  Google Scholar 

  12. Escobar L, Mejía N, Gil H, Santos F. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion. Nefrología. 2013;33:289–96.

    PubMed  Google Scholar 

  13. Guo Y, Liu Y, Liu M, Wang JL, **e ZD, Chen KJ, et al. Na+/HCO3—cotransporter NBCn2 mediates HCO3 reclamation in the apical membrane of renal proximal tubules. J Am Soc Nephrol. 2017;28:2409–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Karet F. Inherited distal renal tubular acidosis. J Am Soc Nephrol. 2002;13:2178–84.

    CAS  PubMed  Google Scholar 

  15. Bresolin NL, Grillo E, Fernandes VR, Carvalho FL, Goes JE, da Silva RJ. A case report and review of hypokalemic paralysis secondary to renal tubular acidosis. Pediatr Nephrol. 2005;20:818–20.

    PubMed  Google Scholar 

  16. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2014;10:1257–72.

    PubMed  PubMed Central  Google Scholar 

  17. Bruce L, Wrong O, Toye AM, Young MT, Ogle G, Ismail Z, et al. Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. Biochem J. 2000;350:41–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiner I, Verlander J. Role of NH3 and NH4 + transporters in renal acid-base transport. Am J Physiol Renal Physiol. 2011;300:11–23.

    Google Scholar 

  19. Jung SW, Park J, Kim S, Lee TW, Ihm CG, Lee SH, et al. Renal tubular acidosis in patients with primary Sjögren’s syndrome. Electrol Blood Press. 2017;15:17–22.

    CAS  Google Scholar 

  20. Kitterer D, Schwab M, Alscher M, Braun N, Latus J. Drug-induced acid–base disorders. Pediatr Nephrol. 2014;30:1407–23.

    PubMed  Google Scholar 

  21. Batlle D, Haque S. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transpl. 2012;27:3691–704.

    CAS  Google Scholar 

  22. Ruf R, Rensing C, Topaloglu R, Guay-Woodford L, Klein C, Volmer M, et al. Confirmation of the ATP6B1 gene as responsible for distal renal tubular acidosis. Pediatr Nephrol. 2003;18:105–9.

    PubMed  Google Scholar 

  23. Pathare G, Dhayat N, Mohebbi N, Wagner CA, Bobulescu IA, Moe OW, et al. Changes in V-ATPase subunits of human urinary exosomes reflect the renal response to acute acid/alkali loading and the defects in distal renal tubular acidosis. Kidney Int. 2018;94:871–80.

    Google Scholar 

  24. Dhayat NA, Schaller A, Albano G, Poindexter J, Griffith C, Pasch A, et al. The vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J Am Soc Nephrol. 2015;27:1544–54.

    PubMed  PubMed Central  Google Scholar 

  25. . Escobar L, Simian C, Treard C, Hayek D, Salvador C, Guerra N, et al. Mutations in ATP6V1B1 and ATP6V0A4 genes cause recessive distal renal tubular acidosis in Mexican families. Mol Genet Genomic Med. 2016;4:303–11.

    CAS  Google Scholar 

  26. Ito N, Ihara K, Kamoda T, Akamine S, Kamezaki K, Tsuru N, et al. Autosomal dominant distal renal tubular acidosis caused by a mutation in the anion exchanger 1 gene in a Japanese family. CEN Case Rep. 2015;4:218–22.

    PubMed  PubMed Central  Google Scholar 

  27. Esmail S, Kartner N, Yao Y, Kim J, Reithmeier R, Manolson M. Molecular mechanisms of cutis laxa- and distal renal tubular acidosis–causing mutations in V-ATPase alpha-subunits, ATP6V0A2 and ATP6V0A4. J Biol Chem. 2018;293:2787–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevens T, Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol. 1997;13:779–808.

    CAS  PubMed  Google Scholar 

  29. Miller R, Zhang P, Smith M, Beaulieu V, Paunescu TG, Brown D, et al. V-ATPase B1-subunit promoter drives expression of EGFP in intercalated cells of kidney, clear cells of epididymis and airway cells of lung in transgenic mice. Am J Physiol Cell Physiol. 2005;288:1134–44.

    Google Scholar 

  30. Pereira PCB, Melo F, de Marco LA, Oliveira EA, Miranda, DM. Simões e Silva AC. Whole-exome sequencing as a diagnostic tool for distal renal tubular acidosis. J Pediatr. 2015;91:583–9.

    Google Scholar 

  31. Santos F, Ordóñez F, Claramunt-Taberner D, Gil-Peña H. Clinical and laboratory approaches in the diagnosis of renal tubular acidosis. Pediatr Nephrol. 2015;30:2099–107.

    PubMed  Google Scholar 

  32. Besouw M, Bienias M, Walsh P, Kleta R, Van’t Hoff WG, Ashton E, et al. Clinical and molecular aspects of distal renal tubular acidosis in children. Pediatr Nephrol. 2017;32:987–96.

    PubMed  Google Scholar 

  33. Boualla L, Jdioui W, Soulami K, Ratbi I, Sefiani A. Clinical and molecular findings in three Moroccan families with distal renal tubular acidosis and deafness: report of a novel mutation of ATP6V1B1 gene. Curr Res Transl Med. 2016;64:5–8.

    CAS  PubMed  Google Scholar 

  34. Karet F, Finberg K, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Human Genet. 1999;65:1656–65.

    CAS  Google Scholar 

  35. Zhou F, Mao J, Ye Q, Zhu X, Zhang Y, Ye Y, et al. Clinical features and genetic findings in Chinese children with distal renal tubular. Int J Clin Exp Pathol. 2018;113:523–32.

    Google Scholar 

  36. Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Lorait C, Baudouin V, et al. Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4. Gene J Am Soc Nephrol. 2006;17:1437–43.

    CAS  PubMed  Google Scholar 

  37. Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwat S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32.

    CAS  PubMed  Google Scholar 

  38. Boettger T, Hübner C, Maier H, Rust M, Beck F, Jentsch T. Deafness and renal tubular acidosis in mice lacking the K–Cl co-transporter Kcc4. Nature. 2002;416:874–8.

    CAS  PubMed  Google Scholar 

  39. Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, et al. Deletion of the chloride transporter Slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem. 2009;284:29470–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blomqvist S, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest. 2004;113:1560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hemstreet B. Antimicrobial-associated renal tubular acidosis. Ann Pharmacother. 2004;38:1031–8.

    PubMed  Google Scholar 

  42. Salter M. Ibuprofen-induced hypokalemia and distal renal tubular acidosis: a patient’s perceptions of over-the-counter medications and their adverse effects. Case Rep Crit Care. 2013;2013:875857.

    PubMed  PubMed Central  Google Scholar 

  43. Iwata K, Nagata M, Watanabe S, Nishi S. Distal renal tubular acidosis without renal impairment after use of tenofovir: a case report. BMC Pharmacol Toxicol. 2016;17:52.

    PubMed  PubMed Central  Google Scholar 

  44. Banhara PB, Gonçalves RT, Rocha PT, Delgado AG, Leite MJr, Gomes CP. Tubular dysfunction in renal transplant patients using sirolimus or tacrolimus. Clin Nephrol. 2015;83:331–37.

    Google Scholar 

  45. Mohebbi N, Mihailova M, Wagner CA. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am J Physiol Renal Physiol. 2009;297:F499–509.

    CAS  PubMed  Google Scholar 

  46. Both T, Zietse R, Hoorn EJ, van Hagen PM, Dalm VA, van Laar JA, et al. Everything you need to know about distal renal tubular acidosis in autoimmune disease. Rheumatol Int. 2014;34:1037–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nandi M, Das M, Nandi S. Failure to thrive and nephrocalcinosis due to distal renal tubular acidosis: a rare presentation of pediatric lupus nephritis. Saudi J Kidney Dis Transpl. 2016;27:1239–43.

    PubMed  Google Scholar 

  48. Pessler F, Emery H, Dai L, Wu YM, Monash B, Cron RQ, et al. The spectrum of renal tubular acidosis in paediatric Sjögren syndrome. Rheumatology. 2005;45:85–91.

    PubMed  Google Scholar 

  49. Goutaudier V, Szwarc I, Serre J, Pageaux G, Argilés A, Ribstein J. Primary sclerosing cholangitis: a new cause of distal renal tubular acidosis. Clin Kidney J. 2016;9:811–3.

    PubMed  PubMed Central  Google Scholar 

  50. Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Abelius MS, Sheng Y, et al. Anti-Ro52 autoantibodies from patients with Sjogren’s syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. J Biol Chem. 2011;286:36478–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Batlle D, Arruda J, Kurtzman N. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med. 1981;304:373–80.

    CAS  PubMed  Google Scholar 

  52. Reddy P. Clinical approach to renal tubular acidosis in adult patients. Int J Clin Pract. 2011;65:350–60.

    CAS  PubMed  Google Scholar 

  53. Batlle D, Ba Aqeel S, Marquez A. The urine anion gap in context. Clin J Am Soc Nephrol. 2018;13:195–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sharma A, Singh R, Yang C, Sharma R, Kapoor R, Filler G. Bicarbonate therapy improves growth in children with incomplete distal renal tubular acidosis. Pediatr Nephrol. 2009;24:1509–16.

    PubMed  Google Scholar 

  55. Weger M, Deutschmann H, Weger W, Kotanko P, Skrabal F. Incomplete renal tubular acidosis in 'primary' osteoporosis. Osteoporosis Int. 1999;10:325–9.

    CAS  Google Scholar 

  56. Weger W, Kotanko P, Weger M, Deutschmann H, Skrabal F. Prevalence and characterization of renal tubular acidosis in patients with osteopenia and osteoporosis and in non-porotic controls. Nephrol Dial Transpl. 2000;15:975–80.

    CAS  Google Scholar 

  57. Batlle D, Sehy J, Roseman M, Arruda J, Kurtzman N. Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int. 1981;20:389–96.

    CAS  PubMed  Google Scholar 

  58. Santos F, Gil-Peña H, Alvarez-Alvarez S. Renal tubular acidosis. Curr Opin Pediatr. 2017;29:206–10.

    CAS  PubMed  Google Scholar 

  59. Sharma A, Sharma R, Kapoor R, Kornecki A, Sural S, Filler G. Incomplete distal renal tubular acidosis affects growth in children. Nephrol Dial Transpl. 2007;22:2879–85.

    Google Scholar 

  60. Vallés PG, Batlle D. Hypokalemic distal renal tubular acidosis. Adv Chronic Kidney Dis. 2018;25:303–20.

    PubMed  Google Scholar 

  61. Alexander RT, Bitzan M. Renal tubular acidosis. Pediatr Clin North Am. 2019;66:135–57.

    PubMed  Google Scholar 

  62. Shavit L, Chen L, Ahmed F, Ferraro PM, Moochhala S, Walsh SB, et al. Selective screening for distal renal tubular acidosis in recurrent kidney stone formers: initial experience and comparison of the simultaneous furosemide and fludrocortisone test with the short ammonium chloride test. Nephrol Dial Transpl. 2016;31:1870–6.

    CAS  Google Scholar 

  63. Dhayat NA, Gradwell MW, Pathare G, Anderegg M, Schneider L, Luethi D, et al. Furosemide/fludrocortisone test and clinical parameters to diagnose incomplete distal renal tubular acidosis in kidney stone formers. Clin J Am Soc Nephrol. 2017;12:1507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ehlayel A, Copelovitch L. Uncommon cribfellows: an infant with hypercalcemia, nephrocalcinosis, and acidosis: answers. Pediatr Nephrol. 2018;33:1697–9.

    PubMed  Google Scholar 

  65. Corey H, Vallo A, Rodríguez-Soriano J. An analysis of renal tubular acidosis by the Stewart method. Pediatr Nephrol. 2005;21:206–11.

    PubMed  Google Scholar 

  66. Ranawaka R, Dayasir K, Gamage M. A child with distal (type 1) renal tubular acidosis presenting with progressive gross motor developmental regression and acute paralysis. BMC Res Notes. 2017;10:618.

    PubMed  PubMed Central  Google Scholar 

  67. Seeger H, Salfeld P, Eisel R, Wagner C, Mohebbi N. Complicated pregnancies in inherited distal renal tubular acidosis: importance of acid-base balance. J Nephrol. 2016;30:455–60.

    PubMed  Google Scholar 

  68. Jha R, Muthukrishnan J, Shiradhonkar S, Patro K, Harikumar K, Modi KD. Clinical profile of distal renal tubular acidosis. Saudi J Kidney Dis Transpl. 2011;22:261–7.

    PubMed  Google Scholar 

  69. Pandita K, Bhat K, Banday T. Double osteomalacia. Clin Cases Miner Bone Metab. 2012;9:198–9.

    PubMed  PubMed Central  Google Scholar 

  70. Carbajo E, López JM, Santos F, Ordóñez FA, Niño P, Rodríguez J. Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol. 2001;12:1228–344.

    CAS  PubMed  Google Scholar 

  71. Sromicki J, Hess B. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment. Urolithiasis. 2016;45:263–9.

    PubMed  Google Scholar 

  72. Nijenhuis T. Acid–base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol. 2006;17:617–26.

    CAS  PubMed  Google Scholar 

  73. Hess B. Acid–base metabolism: implications for kidney stone formation. Urol Res. 2006;34:134–8.

    CAS  PubMed  Google Scholar 

  74. Wu Y. Nephrocalcinosis and hypokalemia in a patient with primary Sjögren’s syndrome. Rheumatol Int. 2010;33:773–5.

    PubMed  Google Scholar 

  75. Zhang J, Fuster D, Cameron M, Quiñones H, Griffith C, **e XS, et al. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am J Physiol Renal Physiol. 2014;307:F1063–F10711071.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bockenhauer D, Rees L, van’t Hoff W. An association of tubular dysfunction, cortical macrocysts and chronic kidney disease. Pediatr Nephrol. 2006;21:580–83.

    PubMed  Google Scholar 

  77. Peters T, Monnens L, Cremers C, Curfs J. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatr Nephrol. 2004;19:1194–201.

    PubMed  Google Scholar 

  78. Stover E. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002;39:796–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Guerra-Hernández NE, Órdaz-López KV, Escobar-Pérez L, Gómez-Tenorio G, García-Nieto VM. Distal renal tubular acidosis screening by urinary acidification testing in Mexican children. Rev Invest Clin. 2015;67:191–8.

    PubMed  Google Scholar 

  80. Escobar L, Mejia N, Gil H, Santos F. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion. Nefrologia. 2013;33:289–96.

    PubMed  Google Scholar 

  81. Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatric Health Med Ther. 2018;9:181–90.

    PubMed  PubMed Central  Google Scholar 

  82. Palazzo V, Provenzano A, Becherucci F, Sansavini G, Mazzinghi B Orlandini V, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney Int. 2017;91:1243–55.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the concept and design, analysis and interpretation of data; drafting or revising of the manuscript; and have approved the manuscript as submitted.

Corresponding author

Correspondence to Ana Cristina Simões e Silva.

Ethics declarations

Ethical approval

Not required for the review article.

Conflict of interest

No financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, S.B.M., de Menezes Silva, L.A.W., de Carvalho Mrad, F.C. et al. Distal renal tubular acidosis: genetic causes and management. World J Pediatr 15, 422–431 (2019). https://doi.org/10.1007/s12519-019-00260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-019-00260-4

Keywords

Navigation