Log in

Landslide susceptibility map** by frequency ratio and fuzzy logic approach: a case study of Mogods and Hedil (Northern Tunisia)

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The aim of this study is to produce a landslide susceptibility map in Mogods and Hedil using the fuzzy logic method. To increase the objectivity of the approach, the fuzzy membership was calculated using the frequency ratio (FR). Nine factors were considered for landslide control, including slope, aspect, plan curvature, profil curvature, distance from faults, distance from rivers, land use, precipitation, and lithology. The frequency ratio was used to calculate the fuzziness of each factor, and these results were then applied to the fuzzy operators to produce the landslide susceptibility map. The selection of the susceptibility map closest to reality was based on the spatial distribution of landslides in each susceptibility class of each fuzzy operator and on the application of the receiver operating curve (ROC). The results of the area under curve (AUC) analysis show that the GAMMA operator (0.90) provided the most accurate prediction of the landslide susceptibility map, as indicated by the prediction accuracy of the model (0.766). The study area was classified into four classes using Jenks natural fracture classification method: low susceptibility zone, moderate susceptibility zone, high susceptibility zone, and very high susceptibility zone. The use of the fuzzy GAMMA operator for landslide susceptibility map** gave a very satisfactory result with a reliability rate of 76.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References  

  • Abdi A, Bouamrane A, Karech T et al (2021) Landslide susceptibility map** using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria). Geotech Geol Eng 39:5675–5691. https://doi.org/10.1007/s10706-021-01855-3

    Article  Google Scholar 

  • Abdul Rahaman S, Aruchamy S (2017) Geoinformatics based landslide vulnerable zonation map** using analytical hierarchy process (AHP), a study of Kallar river sub watershed, Kallar watershed, Bhavani basin, Tamil Nadu. Model Earth Syst Environ 3:41

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34

    Article  ADS  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility map** in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  ADS  Google Scholar 

  • Ben Ayed N (1986) Evolution Tectonique de l’Avant-Pays de la Chaîne Alpine de Tunisie du Début du Mésozoïque à l’Actuel Thèse d’Etat; Université de Paris Sud—Centre d’Orsay: Gif-sur-Yvette, France, 1986

  • Benn JL (2005) Landslide events on the West Coast, South Island, 1867–2002. NZ Geogr 61:3–13. https://doi.org/10.1111/j.1745-7939.2005.00001.x

    Article  Google Scholar 

  • Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon press, p 416

    Google Scholar 

  • Carranza EJM, Hale M (2001) Geologically constrained fuzzy map** of gold mineralization potential, Baguio District, Philippines. Nat Resour Res 10(2):125–136

    Article  CAS  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15:403–426

    Article  Google Scholar 

  • Champati Ray PK, Dimri S, Lakhera RC et al (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111. https://doi.org/10.1007/s10346-006-0068-6

    Article  Google Scholar 

  • Chen RF, Chang KJ, Angelier J, Chan YC, Deffontaines B, Lee CT, Ming-Lang L (2006) Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng Geol 88(3–4):160–172

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1999) Fuzzy weights of evidence method and its application in mineral potential map**. Nat Resour Res 8:27–35

    Article  CAS  Google Scholar 

  • Chung CF, Fabbri AG (2001) Prediction model for landslide hazard using a Fuzzy set Approach. In: M. Marchetti and V. Rivas (eds) Geomorphology and environmental impact assessment. Balkema, Rotterdam, pp. 31–47.

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard map**. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Crampon N (1971) Etude géologique de la bordure des Mogods, du pays de Bizerte et du Nord des Hédils (Tunisie septentrionale). Thèse Nancy, p 522

    Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M (2009) GIS-based landslide susceptibility map** for the 2006 Leyte landslide using generalized linear model. Landslides 6(1):17–26

    Google Scholar 

  • Davies TR (2007) Potential for rock avalanche hazard at Franz Josef glacier village, Westland. Confidential report to west coast regional council. Natural Hazards Research Centre Dept of Geological Sciences University of Canterbury, New Zealand, p14.

  • Devkota KC, Regmi AD, Pourghasemi HR et al (2013) Landslide susceptibility map** using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Dhianaufal D, Kristyanto THW, Indra TL, Syahputra R (2018) Fuzzy logic method for landslide susceptibility map** in volcanic sediment area in Western Bogor. AIP Conf Proc 1:020190. https://doi.org/10.1063/1.5064187

    Article  Google Scholar 

  • El Aroui O (2016) Géomorphologie des mouvements de terrain en Kroumirie septentrionale Tunisie. Faculté des lettres des arts et des humanités de la Manouba

  • Emberger L (1955) Une classification biogéographique des climats. Rec Trav Lab Bot Géol Zool Fac Sc De Montpellier 7:3–43

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41(6):720–730

    Article  Google Scholar 

  • Fatemi Aghda SM, Bagheri V, Razifard M (2018) Landslide susceptibility map** using fuzzy logic system and its influences on mainlines in Lashgarak Region, Tehran. Iran Geotech Geol Eng 36:915–937. https://doi.org/10.1007/s10706-017-0365-y

    Article  Google Scholar 

  • Fressard M (2013) Les glissements de terrain du Pays d’Auge continental (Normandie, France). Caractérisation, 22 cartographie, analyse spatiale et modélisation, Ph.D. Thesis of the University of Caen Basse-Normandie

  • Gupta RP, Sarkar S, Kanungo DP, Patra AK (2008) Landslide hazard zonation in Darjeeling Himalayas using logistic regression model. Landslides 5(4):489–506

    Google Scholar 

  • Highland LM, Bobrowsky P, Kempthorne D, Myers Mark D (2008) The landslide handbook—A guide to understanding landslides: Reston, Virginia, U.S. Geological Survey Circular 1325, p 129

  • Ilanloo M (2011) A comparative study of fuzzy logic approach for landslide susceptibility map** using GIS: An experience of Karaj dam basin in Iran. Procedia Soc Behav Sci 19:668–676. https://doi.org/10.1016/j.sbspro.2011.05.184

    Article  Google Scholar 

  • Iovine G (2008) Mud-flow and lava-flow susceptibility and hazard map** through numerical modelling, GIS techniques, historical and geo-environmental analyses. In: Proceedings of the iEMSs 4th biennial meeting, international congress on environmental modelling ANS software: integrating sciences and information technology for environmental assessment and decision making (iEMSs2008), vol 3, pp 1447–1460

  • Jeanine K (2006) Le glissement de terrain. Informatique Et Sci 22:9–16

    Google Scholar 

  • Jordan C, O’Connor E, Marchant A, Northmore A, Greenbaum D, McDonald A, Kovacik M, Ahmed R (2000) Rapid landslide susceptibility map** using RS and GIS modelling. In Proceedings of 14th International Conference on Applied Geologic Remote Sensing. Las Vegas, NV, pp 113–120

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting methods for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366

    Article  Google Scholar 

  • Karray MR (1977) L’extrémité nord-est de la dorsale tunisienne. Recherches géomorphologiques. Thèse 3ème cycle, Université Tunis, p 174. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=12798891

  • Karray MR (2010) Sahel et Kairouanais septentrionaux et leurs abords montagneux (Tunisie orientale): étude géomorphologique. Thèse de Doctorat d‘état, Univ. Tunis I, 2 volumes, p 736

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility map** using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439. https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Klai A, Haddad R, Bouzid MK et al (2020) Landslide susceptibility map** by fuzzy gamma operator and GIS, a case study of a section of the national road n°11 linking Mateur to Béja (Nortshern Tunisia). Arab J Geosci 13:58. https://doi.org/10.1007/s12517-019-5029-1

    Article  Google Scholar 

  • Kujawski H (1969) Contribution à l’étude géologique de la région des Hedhil et du Béjaoua oriental. Ann Miner Géol Tunis (24):281

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. https://doi.org/10.1007/s00254-005-1228-z

    Article  CAS  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights 422 for landslide susceptibility map** using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Ryu JH, Kim IS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338. https://doi.org/10.1007/s10346-007-0088-x

    Article  Google Scholar 

  • Mandal B, Mandal S (2016) Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM). Model Earth Syst Environ 2:121

    Article  Google Scholar 

  • Marthelot P (1957) L’érosion dans la montagne Kroumirie. Revue De Géographie Alpine, No 45:273–287

    Article  Google Scholar 

  • Marthelot P (1959) Note sur un décollement de versant dans la vallée des Atatfa (Kroumirie). Actes du 84" congr. Nat. Suc . Sav., Dijon 1959. Section de Geographic: 61–65.

  • Menggenang P, Samanta S (2017) Modelling and map** of landslide hazard using remote sensing and GIS techniques. Model Earth Syst Environ 3(3):1113–1122

    Article  Google Scholar 

  • Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298. https://doi.org/10.1016/S0001-2998(78)80014-2

    Article  CAS  PubMed  Google Scholar 

  • Metz CE, Pan X (1999) Proper binormal ROC curves: theory and maximum-likelihood estimation. J Math Psychol 43(1):1–33. https://doi.org/10.1006/jmps.1998.1218

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Miossec A (1977) Observations morphologiques, sur le bassin de l’Oued Sejenane (Tunisie Septentrionale). Méditerranée 29:55–72

    Article  Google Scholar 

  • Miossec A (1979) Paysages et problèmes morphologiques de la région d’Hédil (Tunisie sptentrionale). Rev Tunisienne Géogr 4:57–97

    Google Scholar 

  • Neelakantan R, Yuvaraj S (2013) Relative effect-based landslide hazard zonation map** in parts of Nilgiris, Tamil Nadu, South India. Arab J Geosci 6(11):4207–4213

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility map** at Haraz watershed, Iran. Nat Hazards 63:965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Pradhan B (2010) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intell Syst 3(3):370–381. https://doi.org/10.2991/ijcis.2010.3.3.12

    Article  Google Scholar 

  • Pradhan B (2011) Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques to landslide susceptibilityEnviron Ecol. Stat 18(3):471–493

    MathSciNet  Google Scholar 

  • Pradhan B (2011) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349

    Article  ADS  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility map** using GIS. Comput Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  ADS  Google Scholar 

  • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focussing on different training sites. Int J Phys Sci 4(1):1–15. https://doi.org/10.5897/IJPS.9000343

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner M (2017) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Geosci 100:193–211

    Google Scholar 

  • Rostami Z, Al-modaresi S, Fathizad H et al (2016) Landslide susceptibility map** by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam. Iran Arab J Geosci 9:685. https://doi.org/10.1007/s12517-016-2720-3

    Article  Google Scholar 

  • Rouvier H (1973) Nappes de charriage en Tunise septentrionales : preuves et conséquences paléogéographiques. Ann Mines et Géol 26:33–47

    Google Scholar 

  • Rouvier H (1977) Géologie de l’extrémité nord tunisien. Thèse Doct. Es-Sciences, Université Pierre et Marie Curie, Paris VI, France

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw-Hill California University, p 287

    Google Scholar 

  • Serey A, Escobar P, Moya S, Sepúlveda S A, Petley D (2017) Landslide inventory of the 2010 Mw 8.8 Maule earthquake, Central Chile. 16th world conference on earthquake 16WCEE 2017: 1873

  • Shao X, Ma S, Xu C, Shen L, Lu Y (2020) Inventory, distribution and geometric characteristics of landslides in Baoshan City, Yunnan Province, China. Sustainability 12(6):2433. https://doi.org/10.3390/su12062433

    Article  Google Scholar 

  • Shit PK, Bhunia GS, Maiti R (2016) Potential landslide susceptibility map** using weighted overlay model (WOM). Model EarthSyst Environ 2:21

    Article  Google Scholar 

  • Singh R, Umrao RK, Singh TN (2013) Probabilistic analysis of slope in Amiyan landslide area, Uttarakhand. Geomat Nat Haz Risk 4(1):13–29. https://doi.org/10.1080/19475705.2012.661796

    Article  CAS  Google Scholar 

  • Thiery Y, Maquaire O, Fressard M (2013) Application of expert rules in indirect approaches for landslide susceptibility assessment. Landslides 11:411–424. https://doi.org/10.1007/s10346-013-0390-8

  • Upreti BN, Dhital MR (1996) Landslide studies and management in Nepal. International centre for inte grated mountain development (ICIMOD), Kathmandu, Nepal, pp 87

  • Van Den Eeckhaut M, Hervás J, Malet JP, Guzzetti F (2012) The European landslide inventory map: a tool for the assessment of landslide hazards and risks in Europe. Bull Eng Geol Env 71(2):207–221

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC Publication, vol. 15. International Institute for Aerospace and Earth Resources Survey, Enschede pp 245

  • Wu Y, Li W, Wang Q et al (2016) Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab J Geosci 9:84. https://doi.org/10.1007/s12517-015-2112-0

    Article  Google Scholar 

  • Yalcin A (2008) A GIS-based landslide susceptibility map** using analytical hierarchy process (AHP) and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Acknowledgements

For their cooperation during our days in the field, we would like to thank the team at the Geomatics and Geosystems Laboratory of the University of Manouba, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Adel Klai, Rim Katlane, and Mohamed Chedly Rabia conceived the manuscript, discussed the methodology, and wrote the original draft. Adel Klai, Rim Katlane, and Romdhane Haddad carried out the data analysis. Adel Klai and Romdhane Haddad prepared the maps and tables and draw the figures. All authors read and approved the published version of the manuscript.

Corresponding author

Correspondence to Adel Klai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klai, A., Katlane, R., Haddad, R. et al. Landslide susceptibility map** by frequency ratio and fuzzy logic approach: a case study of Mogods and Hedil (Northern Tunisia). Appl Geomat 16, 91–109 (2024). https://doi.org/10.1007/s12518-023-00544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-023-00544-5

Keywords

Navigation