Log in

Plant Immunity: A Plastic System Operated Through Cell-Fate Transition

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants are continuously exposed to pathogen challenges. To defend themselves, plants have developed sophisticated innate and induced immune responses. The recognition of invading pathogens by membrane-localized or intracellular receptors triggers a local immune response, but plants often also establish a systemic immunity throughout the entire plant body to confer broad-spectrum and long-lasting resistance to secondary infections. Both the local and systemic immune responses are regulated by several phytohormones, including jasmonic acid, ethylene, and salicylic acid, which induce genome-wide transcriptional reprogramming to elicit effective immune responses. During this transcriptional reprogramming, epigenetic mechanisms are engaged to modulate chromatin structure and the accessibility of cis-elements to transcription factors. In this review, we first describe how the model plant Arabidopsis thaliana recognizes invading pathogens to trigger local and systemic immune responses. Next, we describe how phytohormones mediate transcriptional responses, establishing immunity. Finally, we review recent findings in the epigenetic aspect of immunity in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2:106–113

    Article  PubMed  Google Scholar 

  • An C, Li L, Zhai Q, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, Li C (2017) Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci USA 114:E8930–E8939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, Li C (2022) Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol Plant 15:1329–1346

    Article  CAS  PubMed  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  CAS  PubMed  Google Scholar 

  • Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berriri S, Gangappa SN, Kumar SV (2016) SWR1 chromatin-remodeling complex subunits and H2A.Z have non-overlap** functions in immunity and gene regulation in Arabidopsis. Mol Plant 9:1051–1065

    Article  CAS  PubMed  Google Scholar 

  • Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J, He K, Chen Y-h, Zhou J-M (2021) The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184:3528–3541

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3:e03766

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanda B, **a Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Choi S-M, Song H-R, Han S-K, Han M, Kim C-Y, Park J, Lee Y-H, Jeon J-S, Noh Y-S, Noh B (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71:135–146

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, JmP K, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFraia CT, Wang Y, Yao J, Mou Z (2013) Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biol 13:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467

    Article  CAS  PubMed  Google Scholar 

  • Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X (2016) TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 210:960–973

    Article  CAS  PubMed  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta A, Choudhary P, Caruana J, Raina R (2017) JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. Plant J 91:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou JM (2012) A xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases. Nature 485:114–118

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • Gong B-Q, Guo J, Zhang N, Yao X, Wang H-B, Li J-F (2019) Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host Microbe 26:810–822

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Denkert N, Eisa A, Lehmann M, Sjuts I, Weiberg A, Soll J, Meinecke M, Schwenkert S (2019) JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proc Natl Acad Sci USA 116:10568–10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halter T, Imkampe J, Blaum BS, Stehle T, Kemmerling B (2014) BIR2 affects complex formation of BAK1 with ligand binding receptors in plant defense. Plant Signal Behav 9:e28944

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J (2018) Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456–469

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Zhang Y, Wang Y, **e J, Cheng J, Fu Y, Jiang D, Yu X, Li B (2022) Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis. J Genet Genomics 49:796–809

    Article  PubMed  Google Scholar 

  • Imkampe J, Halter T, Huang S, Schulze S, Mazzotta S, Schmidt N, Manstretta R, Postel S, Wierzba M, Yang Y, van Dongen WMAM, Stahl M, Zipfel C, Goshe MB, Clouse S, de Vries SC, Tax F, Wang X, Kemmerling B (2017) The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1. Plant Cell 29:2285–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** H, Choi S-M, Kang M-J, Yun S-H, Kwon D-J, Noh Y-S, Noh B (2018) Salicylic acid-induced transcriptional reprogramming by the HAC–NPR1–TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Res 46:11712–11725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Coopere B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Piquerez SJM, Ramirez-Prado JS, Mastorakis E, Veluchamy A, Latrasse D, Manza-Mianza D, Brik-Chaouche R, Huang Y, Rodriguez-Granados NY, Concia L, Blein T, Citerne S, Bendahmane A, Bergounioux C, Crespi M, Mahfouz MM, Raynaud C, Hirt H, Ntoukakis V, Benhamed M (2020) GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Res 48:5953–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, Dillard L, Powers J, Withers J, Zhao J, Guan Z, Borgnia MJ, Bartesaghi A, Dong X, Zhou P (2022) Structural basis of NPR1 in activating plant immunity. Nature 605:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Lee AH-Y, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn J-Y, Guttman DS, Desveaux D (2013) The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110:18722–18727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, Zhou J-M (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670–683

    Article  CAS  PubMed  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang L-J (2019) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci 20:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu R, Singh D, Yuan X, Kachroo P, Raina R (2020) JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytol 225:2108–2121

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Sonbol F-M, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X (2016) Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature Commun 7:13099

    Article  CAS  Google Scholar 

  • Liu N, Xu Y, Li Q, Cao Y, Yang D, Liu S, Wang X, Mi Y, Liu Y, Ding C, Liu Y, Li Y, Yuan Y-W, Gao G, Chen J, Qian W, Zhang X (2022) A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe 30:1124–1138

    Article  CAS  PubMed  Google Scholar 

  • López A, Ramírez V, García-Andrade J, Flors V, Vera P (2011) The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLOS Genet 7:e1002434

    Article  PubMed  PubMed Central  Google Scholar 

  • López Sánchez A, Stassen JHM, Furci L, Smith LM, Ton J (2016) The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J88:361–374

    Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  CAS  PubMed  Google Scholar 

  • March-Diaz R, Garcia-Dominguez M, Lozano-Juste J, Leon J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Brumos J, Yun J, Hu Q, Spencer Kristina R, Enríquez P, Binder Brad M, Heber S, Stepanova Anna N, Alonso Jose M (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163:684–697

    Article  CAS  PubMed  Google Scholar 

  • Mine A, Nobori T, Salazar-Rondon MC, Winkelmüller TM, Anver S, Becker D, Tsuda K (2017) An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Rep 18:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarova H, Bernsdorff F, Doring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux J-P (2002) EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngou BPM, Ahn H-K, Ding P, Jones JDG (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110–115

    Article  CAS  PubMed  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLOS Pathog 6:e1001137

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577–587

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-Dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, Joe A, Karelina D, Hua C, Fröhlich K, Wan W-L, Hu M, Rao S, Stolze SC, Harzen A, Gust AA, Harter K, Joosten MHAJ, Thomma BPHJ, Zhou JM, Dangl JL, Weigel D, Nakagami H, Oecking C, Kasmi FE, Parker JE, Nürnberger T (2021) The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598:495–499

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Shen Z, S-sC H, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Corina Vlot A, Feys BJ, Niefind K, Parker JE (2011) Different roles of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) bound to and dissociated from PHYTOALEXIN DEFICIENT4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119

    Article  CAS  PubMed  Google Scholar 

  • Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92:4202–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X (2015) Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Schaller F, Biesgen C, Mussig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Sun H-X, Park BS, Huang C-H, Yeh S-D, Jung C, Chua N-H (2017) ELF18-induced long-noncoding RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell 29:1024–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Diloknawarit P, Park BS, Chua NH (2019) ELF18-induced long noncoding RNA 1 evicts fibrillarin from mediator subunit to enhance pathogenesis-related gene 1 (PR1) expression. New Phytol 221:2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

    Article  CAS  PubMed  Google Scholar 

  • Shearer HL, Wang L, DeLong C, Despres C, Fobert PR (2009) NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. Botany 87:561–570

    Article  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, **e D (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–289

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, Rzemieniewski J, Blanvillain-Baufumé S, Harzen A, Bautor J, Derbyshire P, Menke FLH, Finkemeier I, Nakagami H, Jones JDG, Parker JE (2021) Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat Commun 12:3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Hou C, Ren Z, Wang C, Zhao F, Dahlbeck D, Hu S, Zhang L, Niu Q, Li L, Staskawicz BJ, Luan S (2019) A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572:131–135

    Article  CAS  PubMed  Google Scholar 

  • Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng J-K (2019) PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol Plant 12:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Rowe HC, **ao Y, Chehab EW, Kliebenstein DJ, Wagner D, Dehesh K (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4:e1000237

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLOS Pathog 2:e123

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P (2014) Free radicals mediate systemic acquired resistance. Cell Rep 7:348–355

    Article  PubMed  Google Scholar 

  • Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud M-F, Chabannes M, Arlat M, Chen S, He C, Noël LD, Zhou J-M (2015) The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18:285–295

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu Q, Wu Z, Wang H, Han S, ** Y, Zhou J, Zhang Z, Jiang J, Shen Y, Shi H, Yang W (2017) HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana. Plant Cell Environ 40:2972–2986

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu R, Lim GH, de Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A, Kachroo P (2018) Pipecolic acid confers systemic immunity by regulating free radicals. Sci Adv 4:4509

    Article  Google Scholar 

  • Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang H-W, Zhou J-M, Chai J (2019) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:5870

    Article  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu C-W, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle Ian D, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • **a S, Cheng YT, Huang S, Win J, Soards A, **n T-L, Jones JDG, Kamoun S, Chen S, Zhang Y, Li X (2013) Regulation of transcription of nucleotide-binding leucine-rich repeat-encoding genes SNC1 and RPP4 via H3K4 trimethylation. Plant Physiol 162:1694–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **n XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, **e D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham A-L, Penterman J, Fischer RL, Voinnet O, Navarro L (2013a) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci USA 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Soares Juliana M, Mandal Mihir K, Wang C, Chanda B, Gifford Andrew N, Fowler Joanna S, Navarre D, Kachroo A, Kachroo P (2013b) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 3:1266–1278

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J-M, He SY, **n X-F (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun S-H, Noh B, Noh Y-S (2022) Negative evidence on the transgenerational inheritance of defense priming in Arabidopsis thaliana. BMB Rep 55:342–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z, Li X, Zhang Y (2010) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA 107:18220–18225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ménard R, Li Y, Coruzzi GM, Heitz T, Shen W-H, Berr A (2020) Arabidopsis SDG8 potentiates the sustainable transcriptional induction of the pathogenesis-related genes PR1 and PR2 during plant defense response. Front Plant Sci 11:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13:191–202

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Jiang Z, Kim JM, To TK, Li W, Zhang X, Yu Q, Dong Z, Chen W-Q, Seki M, Zhou J-M, Guo H (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF-2021R1A2C1012064 and NRF-2021R1A5A1032428 to Y.-S.N. and NRF-2020R1A2C2008109 to B.N.).

Author information

Authors and Affiliations

Authors

Contributions

S-HY and Y-SN wrote the manuscript with advice and supervision from BN.

Corresponding author

Correspondence to Yoo-Sun Noh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, SH., Noh, B. & Noh, YS. Plant Immunity: A Plastic System Operated Through Cell-Fate Transition. J. Plant Biol. 66, 193–206 (2023). https://doi.org/10.1007/s12374-023-09386-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-023-09386-5

Keywords

Navigation