Log in

Normalized Solutions to the Fractional Schrödinger Equation with Critical Growth

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we discuss the existence of normalized solutions to the following fractional Schrödinger equation

$$\begin{aligned} \left\{ \begin{array}{l} (-\Delta )^s u = \lambda u + g(u) + |u|^{2^{*}_{s}-2}u, \quad x \in \mathbb {R}^{N}, \\ \int _{\mathbb {R}^{N}} u^2 = a^2, \end{array}\right. \end{aligned}$$

where \(N \ge 3\), \(s \in (0,1)\), \(a>0\), \(2_{s}^{*}= 2N/(N-2s)\), \(\lambda \in \mathbb {R}\) arises as a Lagrange multiplier, \((-\Delta )^s\) is the fractional Laplace operator and \(g: \mathbb {R} \rightarrow \mathbb {R}\) satisfies \(L^{2}\)-supercritical conditions. The proof is based on a constrained minimization method and some characterizations of the mountain pass levels are given in order to prove the existence of ground state normalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225–236 (2004)

    Article  MathSciNet  Google Scholar 

  2. Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)

    Book  Google Scholar 

  3. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  4. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  5. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  6. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Berlin (2016)

    Google Scholar 

  8. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  9. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610–108652 (2020)

    Article  MathSciNet  Google Scholar 

  10. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  11. Zhang, P., Han, Z.: Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity. Z. Angew. Math. Phys. 73(4), 149 (2022)

    Article  Google Scholar 

  12. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35(1), 89–132 (2022)

    Article  MathSciNet  Google Scholar 

  13. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59(4), 1–35 (2020)

    Article  Google Scholar 

  14. Devillanova, G., Marano, G.C.: A free fractional viscous oscillator as a forced standard damped vibration. Fract. Calc. Appl. Anal. 19(2), 319–356 (2016)

    Article  MathSciNet  Google Scholar 

  15. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49(1), 33–44 (2009)

    MathSciNet  Google Scholar 

  16. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion noninear Schrödinger equation in the mass critical and supercritical regime. Trans. Am. Math. Soc. 372(3), 2167–2212 (2019)

    Article  Google Scholar 

  17. Hirata, J., Tanaka, K.: Scalar field equations with \(L^{2}\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19(2), 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  18. Jeanjean, L., Lu, S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  19. Guo, Y., Luo, Y., Zhang, Q.: Minimizers of mass critical Hartree energy functionals in bounded domains. J. Differ. Equ. 265(10), 5177–5211 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chen, S., Tang, X.: Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal. 30(2), 1637–1660 (2020)

    Article  MathSciNet  Google Scholar 

  21. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the L2-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    Article  MathSciNet  Google Scholar 

  22. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    Article  MathSciNet  Google Scholar 

  23. Ding, Y., Zhong, X.: Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case. J. Differ. Equ. 334(1), 194–215 (2022)

    Article  Google Scholar 

  24. Chen, S., Rǎdulescu, V.D., Tang, X., Yuan, S.: Normalized solutions for Schrödinger equations with critical exponential growth in \(\mathbb{R} ^{2}\). SIAM J. Math. Anal. 55(6), 7704–7740 (2023)

    Article  MathSciNet  Google Scholar 

  25. Chen, S., Tang, X.: Normalized solutions for Schrödinger equations with mixed dispersion and critical exponential growth in \(\mathbb{R} ^{2}\). Calc. Var. Partial Differ. Equ. 62(9), 261 (2023)

    Article  Google Scholar 

  26. Chen, S., Tang, X.: Another look at Schrödinger equations with prescribed mass. J. Differ. Equ. 386(1), 435–479 (2024)

    Article  Google Scholar 

  27. Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff-Schrödinger-Poisson system. Complex Var. Elliptic Equ. 67(8), 1817–1846 (2022)

    Article  MathSciNet  Google Scholar 

  28. Choudhuri, D., Saoudi, K.: Existence of multiple solutions to Schrödinger-Poisson system in a nonlocal set up in \(\mathbb{R} ^{3}\). Z. Angew. Math. Phys. 73(1), 1–17 (2022)

    Article  Google Scholar 

  29. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60(10), 101509 (2019)

    Article  MathSciNet  Google Scholar 

  30. Soni, A., Datta, S., Saoudi, K., Choudhuri, D.: Existence of solution for a system involving a singular-nonlocal operator, a singularity and a Radon measure. Complex Var. Elliptic Equ. 67(4), 872–886 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Innovation Research 2035 Pilot Plan of Southwest University (SWU-XDPY22015), Natural Science Foundation of Chongqing, China (cstc2020jcyj-jqX0029).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [**nsi Shen, Zengqi Ou and Ying Lv]. The first draft of the manuscript was written by **nsi Shen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Innovation Research 2035 Pilot Plan of Southwest University(SWU-XDPY22015) and Natural Science Foundation of Chongqing, China(cstc2020jcyj-jqX0029).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Lv, Y. & Ou, Z. Normalized Solutions to the Fractional Schrödinger Equation with Critical Growth. Qual. Theory Dyn. Syst. 23, 145 (2024). https://doi.org/10.1007/s12346-024-00995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00995-0

Keywords

Navigation