Log in

New Soliton and Periodic Wave Solutions to the Fractional DGH Equation Describing Water Waves in a Shallow Regime

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, the auxiliary equation method is proposed to find the explicit solutions of the space-time fractional Dullin-Gottwald-Holm equation. Many new soliton and periodic wave solutions to this equation have been determined using the proposed auxiliary equation method. The obtained solutions might play a significant role in shallow water wave propagation. The results manifest that the proposed method is more useful and efficacious than other direct analytical methods. The results also demonstrate that the present technique is a simple and convenient tool for exploring new travelling wave solutions to the currently studied equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

This article contains all of the data generated or analysed throughout the research.

References

  1. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  2. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Saha Ray, S.: Fractional Calculus with Applications for Nuclear Reactor Dynamics. CRC Press, New York (2015)

    MATH  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Herrmann, R.: Fractional calculus: an introduction for physicists. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  6. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-hydrology. Elsevier, London (2017)

    MATH  Google Scholar 

  7. Saha Ray, S., Gupta, A.K.: Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations. Chapman and Hall/CRC, New York (2018)

    MATH  Google Scholar 

  8. Saha Ray, S., Sahoo, S.: Generalized Fractional Order Differential Equations Arising in Physical Models. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  9. Saha Ray, S.: Nonlinear Differential Equations in Physics. Springer, Singapore (2020)

    MATH  Google Scholar 

  10. Saha Ray, S.: Exact solutions for time-fractional diffusion-wave equations by decomposition method. Phys. Scr. 75, 53–61 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Khan, Y., Faraz, N., Yildirim, A., Wu, Q.: Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science. Comput. Math. Appl. 62, 2273–2278 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Saha Ray, S.: Soliton solutions of nonlinear and nonlocal sine-gordon equation involving riesz space fractional derivative. Z. Naturforsch. A. 70, 659–667 (2015)

    Google Scholar 

  13. Bekir, A., Güner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10, 021020 (2015)

    Google Scholar 

  14. Saha Ray, S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71, 859–868 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Bekir, A., Aksoy, E., Cevikel, A.C.: Exact solutions of nonlinear time fractional partial differential equations by sub-equation method. Math. Methods Appl. Sci. 38, 2779–2784 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Saha Ray, S., Sahoo, S.: Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 70, 158–166 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Bekir, A., Guner, O., Cevikel, A.C.: The fractional complex transforms and exp-function methods for fractional differential equations. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/426462

    Article  MathSciNet  MATH  Google Scholar 

  18. Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and -expansion methods. Rom. J. Phys. 60, 360–378 (2015)

    Google Scholar 

  19. Saha Ray, S.: New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods. Chin. Phys. B. 25, 040204 (2016)

    Google Scholar 

  20. Zheng, B., Feng, Q.: (2014): The Jacobi elliptic equation method for solving fractional partial differential equations. Adv. Differ. Equ. 1, 1–11 (2014)

    Google Scholar 

  21. Khan, Y., Taghipour, R., Falahian, M., Nikkar, A.: A new approach to modified regularized long wave equation. Neural. Comput. Appl. 23, 1335–1341 (2013)

    Google Scholar 

  22. Khan, Y., Faraz, N.: Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 40, 593–601 (2021)

    Google Scholar 

  23. Sayevand, K., Khan, Y., Moradi, E., Fardi, M.: Finding the generalized solitary wave solutions within the -expansion method. CMES - Comput. Model. Eng. Sci. 105, 361–373 (2015)

    Google Scholar 

  24. Khan, Y.: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena. Res. Phys. 18, 103324 (2020)

    Google Scholar 

  25. Khan, Y.: A novel soliton solutions for the fractal Radhakrishnan–Kundu–Lakshmanan model arising in birefringent fibers. Opt. Quantum Electron. 53, 1–8 (2021)

    Google Scholar 

  26. Khan, Y.: A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers. Mod. Phys. Lett. B. 35, 2150058 (2021)

    MathSciNet  Google Scholar 

  27. Khan, Y.: Novel soliton solutions of the fractal Biswas-Milovic model arising in Photonics. Int. J. Mod. Phys. B. 35, 2150001 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Khan, Y.: A variational approach for novel solitary solutions of FitzHugh–Nagumo equation arising in the nonlinear reaction–diffusion equation. Int. J. Numer. Methods Heat Fluid Flow. 31, 1104–1109 (2020)

    Google Scholar 

  29. Khan, Y.: A new necessary condition of soliton solutions for Kawahara equation arising in physics. Optik 155, 273–275 (2018)

    Google Scholar 

  30. Kaabar, M.K.A., Kaplan, M., Siri, Z.: New exact soliton solutions of the (3+1)-dimensional conformable Wazwaz-Benjamin-Bona-Mahony Equation via two novel techniques. J. Funct. Spaces, 2021, 4659905 (2021). https://doi.org/10.1155/2021/4659905

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, D., Hosseini, K., Kaabar, M.K.A., Kaplan, M., Salahshour, S.: On some novel solution solutions to the generalized Schrödinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope. J. Ocean Eng. Sci. 7(4), 353–362 (2022)

    Google Scholar 

  32. Akbulut, A., Kaplan, M., Kaabar, M.K.A.: New conservation laws and exact solutions of the special case of the fifth-order KdV equation. J. Ocean Eng. Sci. 7(4), 377–382 (2022)

    Google Scholar 

  33. Dullin, H.R., Gottwald, G.A., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 194501 (2001)

    Google Scholar 

  34. **ao, G.C., **an, D.Q., Liu, X.Q.: Application of Exp-function method to Dullin–Gottwald–Holm equation. Appl. Math. Comput. 210, 536–541 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Meng, Q., He, B., Long, Y., Li, Z.: New exact periodic wave solutions for the Dullin–Gottwald–Holm equation. Appl. Math. Comput. 218, 4533–4537 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Zahed, H.: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 44, 4094–4104 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Younis, M., Seadawy, A.R., Sikandar, I., Baber, M.Z., Ahmed, N., Rizvi, S.T.R., Althobaiti, S.: Nonlinear dynamical study to time fractional Dullian–Gottwald–Holm model of shallow water waves. Int. J. Mod. Phys. B. 36, 2250004 (2022)

    Google Scholar 

  38. Saha Ray, S., Sagar, B.: Numerical solution of fractional Dullin–Gottwald–Holm equation for solitary shallow water waves. Numer. Methods Partial Differ. Equ. 38(5), 1556–1569 (2022)

    MathSciNet  Google Scholar 

  39. Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation. Comput. Math. with Appl. 58, 2523–2527 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75, 876–882 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Rezazadeh, H., Korkmaz, A., Eslami, M., Mirhosseini-Alizamini, S.M.: A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method. Opt. Quantum Electron. 51, 1–12 (2019)

    Google Scholar 

  42. Saha Ray, S.: Dispersive optical solitons of time-fractional Schrödinger-Hirota equation in nonlinear optical fibers. Physica A. 537, 122619 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Guner, O.: New exact solutions to the space–time fractional nonlinear wave equation obtained by the ansatz and functional variable methods. Opt. Quant. Electron 50, 38 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha Ray, S. New Soliton and Periodic Wave Solutions to the Fractional DGH Equation Describing Water Waves in a Shallow Regime. Qual. Theory Dyn. Syst. 21, 151 (2022). https://doi.org/10.1007/s12346-022-00682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00682-y

Keywords

Mathematics Subject Classification

Navigation