Log in

Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The effects of trehalose (Tre), a non-reducing disaccharide, on metabolic changes, antioxidant status, and salt tolerance in Dunaliella bardawil cells were investigated. Algal suspensions containing 1, 2, and 3 M NaCl were treated with 5 mM Tre. While the content of pigments, reducing sugars, proteins, glycerol, and ascorbate pool accumulated with increasing salinity, the content of non-reducing sugars, starch, amino acids, proline, hydrogen peroxide, and lipid peroxidation level decreased significantly. Tre-treated cells showed a decrease in pigments content, reducing sugars, starch, proteins, amino acids, proline, glycerol, and the activity of non-specific peroxidase and polyphenol oxidase, but an increase in non-reducing sugars, oxidized ascorbate, and ascorbate peroxidase activity occurred unchanged in the ascorbate pool. However, the density and fresh weight of the cells remained statistically unchanged in all Tre-treated and untreated cultures. These results suggest that D. bardawil cells potentially tolerate different salt levels by accumulating metabolites, whereas Tre treatment changes carbon partitioning and significantly reduces beneficial metabolites without altering salt tolerance. Therefore, the regulation of carbon partitioning rather than the amount of assimilated carbon may play an important role in inducing salinity tolerance of D. bardawil. However, Tre is not able to enhance the salt tolerance of halotolerants and is even economically damaging due to the reduction of unique metabolites such as glycerol and β-carotene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2004) Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 6:49–57

    CAS  Google Scholar 

  • Abdallah MS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot 103:275–282

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism. J Agron Crop Sci 197:258–271

    Article  CAS  Google Scholar 

  • Almeida AM, Cardoso LA, Santos DM, Torné JM, Fevereiro PS (2007) Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol 43:167–177

    Article  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avron M, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Bae H, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126

    Article  CAS  Google Scholar 

  • Bahador E, Einali A, Azizian-Shermeh O, Sangtarash MH (2019) Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. Aquat Toxicol 217:105356

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free Proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1981) Glycerol and β-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends Biochem Sci 6:297–299

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halo-tolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotenerich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Grazia Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, pp 21–38

    Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 14:140–148

    Article  CAS  Google Scholar 

  • Chen G, Asada K (1992) Inactivation of ascorbate peroxidase by thoils requires hydrogen peroxide. Plant Cell Physiol 33:117–123

    CAS  Google Scholar 

  • Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Article  CAS  Google Scholar 

  • Chen H, Jiang JG, Wu GH (2009) Effect of salinity changes on the growth of Dunaliella salina and its isozyme activites of glycerol- 3-phosphat dehydrogenas. J Agric Food Chem 57:6178–6182

    Article  CAS  PubMed  Google Scholar 

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248

    Article  CAS  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plant. Biol Plant 42:233–239

    Article  CAS  Google Scholar 

  • Einali A (2018) The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity. Protoplasma 255:601–611

    Article  CAS  PubMed  Google Scholar 

  • Einali A, Valizadeh J (2015) Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing b-carotene production. Acta Physiol Plant 37:83

    Article  CAS  Google Scholar 

  • Einali A, Valizadeh J (2017) Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees 31:659–671

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R-27R

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba response to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Garcia F, Freile-Pelegrin Y, Robledo D (2007) Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan Mexico. Bioresour Technol 98:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Haghjou MM, Shariati M, Smirnoff N (2009) The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol Plant 135:272–280

    Article  CAS  PubMed  Google Scholar 

  • Haghjou MM, Colville L, Smirnoff N (2014) The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiol Biochem 84:96–104

    Article  CAS  Google Scholar 

  • Han X, Ning W, Ma X, Wang X, Zhou K (2020) Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metab Eng Commun 11:e00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Handel EV (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283

    Article  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga G, Suarez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signalling. Int J Mol Sci 10:3793–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke LS, White AL (2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J Plant Physiol 160:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Khadri M, Tejera NA, Liuch C (2006) Alleviation of salt stress in common bean by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Luck H (1965) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlage Chemie, Weinheim, pp 885–894

    Chapter  Google Scholar 

  • Luo Y, Li F, Wang GP, Yang XH, Wang W (2010) Exogenous supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54:495–501

    Article  CAS  Google Scholar 

  • Manan A, Ayyub CM, Pervez MA, Ahmad R (2016) Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pak J Agric Sci 53:35–41

    Google Scholar 

  • Markwell MAK, Hass SM, Tolbert NE, Bieber LL (1981) Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol 72:296–303

    Article  CAS  PubMed  Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mirshekari M, Einali A, Valizadeh J (2019) Metabolic changes and activity pattern of antioxidant enzymes induced by salicylic acid treatment in green microalga Dunaliella salina under nitrogen deficiency. J Appl Phycol 31:1709–1719

    Article  CAS  Google Scholar 

  • Mishra A, Jha B (2011) Antioxidant response of the microalga Dunaliella salina under salt stress. Bot Mar 54:195–199

    Article  CAS  Google Scholar 

  • Mishra A, Mandoli A, Jha B (2008) Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J Ind Microbiol Biotechnol 35:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Mohamedin A, El-Kader AA, Badran NM (2006) Response of sunflower (Helianthus annuus L.) to plants salt stress under different water table depths. J Appl Sci Res 2:1175

    Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisuta P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  Google Scholar 

  • Oren A (2017) Glycerol metabolism in hypersaline environments. Environ Microbiol 19:851–863

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol 46:736–742

    CAS  PubMed  Google Scholar 

  • Paul M (2007) Trehalose 6-phosphate. Curr Opin Plant Biol 10:303–309

    Article  CAS  PubMed  Google Scholar 

  • Peoples MB, Dalling MJ (1978) Degradation of ribulose 1,5- bisphosphate carboxylase by proteolytic enzymes from crude extracts of wheat leaves. Planta 138:153–160

    Article  CAS  PubMed  Google Scholar 

  • Prado FE, Boero C, Gallardo M, Gonzalez JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. Bot Bull Acad Sin 41:27–34

    CAS  Google Scholar 

  • Ramadan AA, Abd Elhamid EM, Sadak MS (2019) Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Centre 43:118

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salguero A, de la Morena B, Vigara J, Vega JM, Vilchez C, Leon R (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253

    Article  CAS  PubMed  Google Scholar 

  • Shariati M, Lilley MC (1994) Loss of intracellular glycerol from Dunaliella by electroporation at constant osmotic pressure: subsequent restoration of glycerol content and associated volume changes. Plant Cell Environ 17:1295–1304

    Article  CAS  Google Scholar 

  • Shigeoka S, Yokota A, Nakano Y, Kitaoka S (1979) The effect of illumination on the L-ascorbic acid content in Euglena gracillis Z. Agric Biol Chem 43:2053–2058

    CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Article  CAS  Google Scholar 

  • Stone SL, Gifford DJ (1997) Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early seedling growth: I. Storage protein reserves. Int J Plant Sci 158:727–737

    Article  CAS  Google Scholar 

  • Takagi M, Karseno YT (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt tolerance rice seedlings. Asian J Crop Sci 4:165–170

    Article  Google Scholar 

  • Theerakulpisut P, Phongngarm S (2013) Alleviation of adverse effects of salt stress on rice seedlings by exogenous trehalose. Asian J Crop Sci 5:405–415

    Article  Google Scholar 

  • Velitcukova M, Fedina I (1998) Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35:89–97

    Article  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Cocking EC (1955) The determination of amino acids with Ninhydrin. Analyst 80:209–213

    Article  CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Article  Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deputy of Research at the University of Sistan and Baluchestan for monetary donation in the form of a grant for M.Sc. research project.

Funding

This work was funded by the Deputy of Research at the University of Sistan and Baluchestan in the form of a grant for M.Sc. research project.

Author information

Authors and Affiliations

Authors

Contributions

MP: Laboratory investigation. AE: Supervision, Conceptualization, Writing- Original draft preparation, Funding acquisition, experimental design, Data curation, Formal analysis, Project Administration, Writing- Reviewing and Edit.

Corresponding author

Correspondence to Alireza Einali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

No Informed consent are applicable to this study.

Human or animal rights

No human/animal rights are applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjekobi, M., Einali, A. Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil. Physiol Mol Biol Plants 27, 2333–2344 (2021). https://doi.org/10.1007/s12298-021-01078-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01078-z

Keywords

Navigation