Log in

Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

In this study, we analyzed the behavior of several neglected, ancestral, and domesticated wheat genotypes, including Ae. triuncialis, Ae. neglecta, Ae. caudata, Ae. umbellulata, Ae. tauschii, Ae. speltoides, T. boeoticum, T. urartu, T. durum, and T. aestivum under control and salinity stress to assess the mechanisms involved in salinity tolerance. Physiological and biochemical traits including root/shoot biomasses, root/shoot ion concentrations, activity of antioxidant enzymes APX, SOD, and GXP, and the relative expression of TaHKT1;5, TaSOS1, APX, GXP, and MnSOD genes were measured. Analysis of variance (ANOVA) revealed significant effects of the salinity treatments and genotypes for all evaluated traits. Salinity stress (350 mM NaCl) significantly decreased root/shoot biomasses, K+ concentration in root/shoot, and root/shoot K+/Na+ ratios. In contrast, salinity stress significantly increased Na+ concentration in root and shoot, activity of antioxidant enzymes (APX, SOD, and GPX) and relative expression of salt tolerance-related genes (TaHKT1;5, TaSOS1, APX, GPX, and MnSOD). Based on heat map and principal component analysis, the relationships among physiological traits and relative expression of salt-responsive genes were investigated. Remarkably, we observed a significant association between the relative expression of TaHKT1;5 with root K+ concentration and K+/Na+ ratio and with TaSOS1. Taken together, our study revealed that two neglected (Ae. triuncialis) and ancestral (Ae. tauschii) wheat genotypes responded better to salinity stress than other genotypes. Further molecular tasks are therefore essential to specify the pathways linked with salinity tolerance in these genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SFW:

Shoot fresh weight

RFW:

Root fresh weight

SDW:

Shoot dry weight

RDW:

Root dry weight

LN:

Leaf Na+ concentration

LK:

Leaf K+ concentration

RN:

Root Na+ concentration

RK:

Root K+ concentration

LKN:

K+/Na+ ratio of leaf

RKN:

K+/Na+ ratio of root

APX activity:

Ascorbate peroxidase activity

GPX activity:

Guaiacol peroxidase activity

SOD activity:

Superoxide dismutase activity

APX gene:

APX gene expression

GPX gene:

GPX gene expression

SOD gene:

MnSOD gene expression

SOS1 gene:

TaSOS1 gene expression

TaHKT1;5 gene:

TaHKT1;5 gene expression

References

  • Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018a) Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: potential sources of variability for drought adaptation. Arch Agron Soil Sci 64:1351–1365

    Article  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018b) Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol Plant 40:90

    Article  CAS  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Fabriki-Ourang S, Mehrabi AA, Siddique KHM (2018c) Screening wild progenitors of wheat for salinity stress at early stages of plant growth: insight into potential sources of variability for salinity adaptation in wheat. Crop Pasture Sci 69:649–658

    Article  CAS  Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The lutein-prevention and treatment for diseases. Transworld Research Network, Trivandrum, pp 187–256

    Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36:2243–2251

    Article  CAS  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Seyed-Tabatabaei B, Saha P (2018) Expression pattern of salt tolerance-related genes in Aegilops cylindrica. Physiol Mol Biol Plants 24:61–73

    Article  CAS  PubMed  Google Scholar 

  • Ariyarathna HACK, Oldach KH, Francki M (2016) A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na+ concentration in bread wheat. BMC Plant Biol 16:1–21

    Article  CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  • Blum A (2011) Drought resistance—is it really a complex trait? Funct Plant Biol 38:753–757

    Article  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plump-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Food Agriculture and Organization (FAO) (2015) Cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/. Accessed 20 Mar 2016

  • Gao J, Sun J, Cao P, Ren L, Liu L, Chen S, Chen F, Jiang J (2016) Variation in tissue Na+ concentration and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC Plant Biol 16:98–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong D, Guo Y, Schumaker KS, Zhu JK (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134:919–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal E, Amit SK, Singh RS (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep 6:27752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular No. 374. The College of Agriculture, University of California, Berkeley, CA, USA

  • Horie T, Schroeder JI (2004) Sodium transporters in plants diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    PubMed  PubMed Central  Google Scholar 

  • Hossain MS, ElSayad AI, Moore M, Dietz KJ (2017) Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot 68:1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oseten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Doherty SJ, Croy RRD (2003) Biphasic superoxide generation in potato tubers. A self-amplifying response to stress. Plant Physiol 13:1440–1449

    Article  CAS  Google Scholar 

  • Kang H-M, Saltveit ME (2002) Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat shocked rice (Oryza sativa L.) seedling radicles. J Agric Food Chem 50(3):513–518

    Article  CAS  PubMed  Google Scholar 

  • Katschnig D, Bliek T, Rozema J, Schat H (2015) Constitutive highlevel SOS1 expression and absence of HKT1; 1 expression in the salt accumulating halophyte Salicornia dolichostachya. Plant Sci 234:144–154

    Article  CAS  PubMed  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signaling pathways: specificity and cross talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Maser P, Eckelmana BV, Vaidyanathan R, Horie T, Frbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Mr Sussman, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2005) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  Google Scholar 

  • Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 7:339–346

    Article  CAS  Google Scholar 

  • Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FH, Jiang X, Durzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyiga BC, Sharma RC, Shen J, Baum M (2016) Identification and characterization of salt tolerance of wheat germplasm using multivariable screening. J Agron Crop Sci 202:472–485

    Article  CAS  Google Scholar 

  • Pagnotta MA, Mondini L, Porceddu E (2009) Quantification and organization of WIS2-1A and BARE-1 retrotransposons in different genomes of Triticum and Aegilops species. Mol Genet Genomics 282:245–255

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Moghaddam M, Etminan A (2017a) Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant 39:106

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A, Mohmoudi AM, Ahmadi J, Mehrabi AA, Alavikia SS (2017b) Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet Resour Crop Evol 64:545–556

    Article  Google Scholar 

  • Ramezani A, Niazi A, Abolimoghadam AA, Zamani Bobgohari M, Deihimi T, Ebrahimi M, Akhtadanesh H, Ebrahimie E (2013) Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Mol Biotechnol 53:189–197

    Article  CAS  PubMed  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell Environ 29:2143–2152

    Article  CAS  Google Scholar 

  • SAS Institute (2011) Base SAS 9.1 procedures guide. SAS Institute Inc, Cary

    Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037:1–26

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Luo W, Lin W, Ma L, Kabir MH (2015) Model of cation transportation mediated by high-affinity potassium transports (HKTs) in higher plants. Biol Proced Online 17:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suneja Y, Gupta AK, Bains NS (2017) Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress. Physiol Mol Biol Plants 23:99–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461

    Article  CAS  Google Scholar 

  • Verma KK, Singh M, Gupta RK, Verma CL (2014) Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. Turk J Bot 38:130–140

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    Article  CAS  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentlemean R, Huber W, Liaw A et al (2014) gplots: various R programming tools for plotting data. http://CRAN.R-project.org/package=gplots. Accessed 5 Feb 2019

  • Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG, Tang W, Kou M, Ma DF (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20–27

    Article  CAS  PubMed  Google Scholar 

  • Yousfi S, Marquez AJ, Betti M (2016) Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. J Integr Plant Biol 58:48–66

    Article  CAS  PubMed  Google Scholar 

  • Zamani Bangohari M, Niazi A, Moghaddam AA, Deihimi T, Ebrahimie E (2013) Genome-wide analysis of key salinitytolerance transporter (HKT;5) in wheat and wild wheat relatives (A and D genomes). Vitro Cell Dev Biol Plant 49:97–106

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Peng Y, Wang X, Peng D, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2015) Clones of FeSOD, MDHAR, DHAR genes from white clover and gene expression analysis of ROS-scavenging enzymes during abiotic stress and hormone treatments. Molecules 20:20939–20954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67(3):835–844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the technical and lab facilities support from the Genetic and Genomic laboratory of Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, J., Pour-Aboughadareh, A., Fabriki Ourang, S. et al. Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol Mol Biol Plants 26, 537–549 (2020). https://doi.org/10.1007/s12298-020-00768-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00768-4

Keywords

Navigation