Log in

Characterization of an in vitro model system to explore control of tumor invasion of EMT6 and 4THM breast tumors by CD200:CD200R interactions

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background and purpose

In BALB/c mice with transplantable breast tumors, we showed that CD200R1KO mice were cured of local and metastatic growth of EMT6 cells following surgical resection of localized tumor and immunization with irradiated cells along with CpG as adjuvant. On the other hand, wild-type (WT) animals treated in the same fashion develop pulmonary and liver metastases within 20 days of surgery. To develop an in vitro system which would mimic the in vivo model and allow exploration of factors controlling tumor invasion as a precursor to in vivo metastasis, we have developed and characterized a two-phase culture system.

Methods

Bone marrow mesenchymal stromal cells (BMMSCs) from WT, CD200KO or CD200R1KO mice were admixed with T lymphocytes from tumor-immunized mice and cultured in collagen gels. Tumor cells were subsequently seeded in fresh medium above this gel 1d later. We then investigated the regulation of tumor invasion from the liquid to the gel layer. Tumor cells were measured in the gel layer following collagenase digestion and cultured at limiting dilution—an aliquot of the digest was also analyzed for cytokine levels in ELISA.

Results

BMMSCs from WT, CD200KO and CD200R1KO mice all augmented seeding/growth of EMT6 and 4THM tumor cells into the collagen matrix. Inclusion of IL-6 and IL-17 in the gel matrix was associated with increased invasion of tumor cells into this layer. Inclusion of DLN cells from EMT6 immune or 4THM immune mice further modified tumor invasion, with increased tumor numbers seen using stromal elements from CD200 and CD200R1KO mice and DLN from 4THM immune, while CD200R1KO-derived DLN of EMT6 immune mice attenuated tumor invasion, despite inclusion of IL-6/IL-17 in the gel layer.

Conclusion

Multiple factors can regulate tumor invasion, including micro-environmental stromal elements, IL-6/IL-17, and signals from tumor-derived DLN cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siva A, **n H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200 Cancer Immunol. Immunotherapy. 2008;57:987–96.

    Article  CAS  Google Scholar 

  2. Moreaux J, Veyrune JL, Reme T, DeVos J, Klein B. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun. 2008;366:117–22.

    Article  PubMed  CAS  Google Scholar 

  3. McWhirter JR, KretzRommel A, Saven A, et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Nat Acad Sci USA. 2006;103:1041–6.

    Article  PubMed  CAS  Google Scholar 

  4. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL. Co-expression of the tolerogenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364:778–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gorczynski RM, Chen Z, Diao J, et al. Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat. 2010;123:405–15.

    Article  PubMed  CAS  Google Scholar 

  6. Gorczynski RM, Clark DA, Erin N, Khatri I. Role of CD200 in regulation of tumor invasion of EMT6 tumor cells in mice. Breast Cancer Res Treat. 2011;130:49–60.

    Article  PubMed  CAS  Google Scholar 

  7. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM. Bidirectional effect of CD200 on breast cancer development and tumor invasion with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene. 2014;34:3860.

    Article  PubMed  CAS  Google Scholar 

  8. De Visser KE, Eichten A, Lisa M. Coussens paradoxical roles of the immune system during cancer development. Nat Cancer Rev. 2006;6:24–37.

    Article  CAS  Google Scholar 

  9. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic tumor invasion. Nature. 2015;527:329–35. https://doi.org/10.1038/nature15756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gorczynski RM, Erin N, Zhu F. Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor. Cancer Med. 2016. https://doi.org/10.1002/cam4.575.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19:439–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Elgamal OA, Park JK, Gusev Y, Azevedo-POuly AC, Jiang J, Roopra A, Schmittgen TD. Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PLoS ONE. 2013;8(10):e76402. https://doi.org/10.1371/journal.pone.0076402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13:1577–85.

    Article  PubMed  CAS  Google Scholar 

  14. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  CAS  Google Scholar 

  15. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84. https://doi.org/10.1186/s13058-016-0740-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol. 2017;232:2679–97. https://doi.org/10.1002/jcp.25664.

    Article  PubMed  CAS  Google Scholar 

  17. Majety M, Pradel LP, Gies M, Ries CH. Fibroblasts influence survival and therapeutic response in a 3d co-culture model. PLoS ONE. 2015;10:e0127948. https://doi.org/10.1371/journal.pone.0127948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sodek KL, Brown TJ, Ringuette MJ. Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer. 2008;8:223. https://doi.org/10.1186/1471-2407-8-223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Magdeldin T, López-Dávila V, Villemant C, Cameron G, Drake R, Cheema U, Loizidou M. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer. J Tissue Eng. 2014;5:2041731414544183. https://doi.org/10.1177/2041731414544183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhao P, Chen Y, Yue Z, Yuan Y, Wang X. Bone marrow mesenchymal stem cells regulate stemness of multiple myeloma cell lines via BTK signaling pathway. Leuk Res. 2017;57:20–6.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu F, Khatri I, Spaner D, Gorczynski RM. An autologous tumor vaccine for CLL. Leuk Res. 2018: in press.

  22. Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM. Further evidence for a role of tumor CD200 expression in breast cancer tumor invasion: decreased tumor invasion in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat. 2012;136:117–27.

    Article  PubMed  CAS  Google Scholar 

  23. Gorczynski RM, Chen Z, Khatri I, Podnos A, Yu K. Cure of metastatic growth of EMT6 tumor cells in mice following manipulation of CD200:CD200R signaling. Breast Cancer Res Treat. 2013;142:271–82. https://doi.org/10.1007/s10549-013-2735-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gorczynski R, Chen Z, Erin N, Khatri I, Podnos A. Comparison of immunity in mice cured of primary/metastatic growth of EMT6 or 4THM breast cancer by chemotherapy or immunotherapy. PLoS ONE. 2014;9(11):e113597. https://doi.org/10.1371/journal.pone.0113597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sheen-Chen S-M, Chen W-J, Eng H-L, Chou F-F. Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Research and Treatment 1997; 43; 211–215 Clin Cancer Res November 1 2004 10 (21) 7157-7162; https://doi.org/10.1158/1078-0432.ccr-04-0812.

  26. Heike Knupfer and Rainer Preiß. Significance of interleukin-6 (IL-6) in breast cancer. Breast Cancer Res Treat. 2007;102:129–35. https://doi.org/10.1007/s10549-006-9328-3.

    Article  PubMed  CAS  Google Scholar 

  27. Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpé S, Vermeulen PB, Dirix LY. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res. 2004;10:7157–62.

    Article  PubMed  CAS  Google Scholar 

  28. Bar-Eli M. Role of interleukin-8 in tumour growth and tumor invasion of human melanoma. Pathobiology. 1999;67:12–8. https://doi.org/10.1159/000028045.

    Article  PubMed  CAS  Google Scholar 

  29. **ngWu Zhu X-W, Mulcahy LA, Mohammed RAA, Lee AHS, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008;10:R95. https://doi.org/10.1186/bcr2195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, Verstegen NJM, Ciampricotti M, Hawinkels LJAC, Jonkers J, de Visser KE. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer tumor invasion. Nature. 2015;522:345–8. https://doi.org/10.1038/nature14282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL-6 secretion. Proc Natl Acad Sci USA. 2011;108:1397–402.

    Article  PubMed  Google Scholar 

  32. Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, Lee DS. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous tumor invasion through IL-6 trans-signaling in a murine model. Breast Cancer Res. 2013;15(5):79.

    Article  Google Scholar 

  33. Roy LD, Sahraei M, Schettini JL, Gruber HE, Besmer DM, Mukherjee P. Systemic neutralization of IL-17A significantly reduces breast cancer associated tumor invasion in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer. 2014;27(14):225. https://doi.org/10.1186/1471-2407-14-225.

    Article  CAS  Google Scholar 

  34. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, **ong W, Li G, Zeng Z, Guo C. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73. https://doi.org/10.7150/jca.17648 (eCollection 2017. Review).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F, Attieh Y, Zaccarini F, Lae M, Loew D, Dingli F, Sirven P, Schoumacher M, Gurchenkov BG, Plodinec M, Vignjevic DM. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun. 2017;8:924. https://doi.org/10.1038/s41467-017-00985-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. ** K, Pandey NB, Popel AS. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and tumor invasion. Oncotarget. 2017;8:60210–22. https://doi.org/10.18632/oncotarget.19417.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and tumor invasion. Nature Cell Biol. 2014;16:717–27.

    Article  PubMed  CAS  Google Scholar 

  38. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang S, Zhang H-W, Lu M-H, He X-H, Li Y, Gu H, et al. MicroRNA-155 Functions as an OncomiR in breast cancer by targeting the Suppressor of Cytokine Signaling 1 Gene. Cancer Res. 2010;70:3119–27.

    Article  PubMed  CAS  Google Scholar 

  40. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, Shen H. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Oncotarget. 2017;8:21609–25. https://doi.org/10.18632/oncotarget.15450.

    Article  Google Scholar 

  41. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of tumor invasion. Cancer Cell. 2016;30:836–48. https://doi.org/10.1016/j.ccell.2016.10.009.Review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, Liu B, Su L. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and tumor invasion of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8:20741–50. https://doi.org/10.18632/oncotarget.15119.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen Y, Zeng C, Zhan Y, Wang H, Jiang X, Li W. Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell tumor invasion through exosome-mediated paracrine Wnt10b. Oncogene. 2017;36:4692–705. https://doi.org/10.1038/onc.2017.100 Epub 2017 Apr 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML, Begum J, Baker AM, Amgheib A, Saif J, Perez M, Soriano J, Desco M, Gomez-Gaviro MV, Cusso L, Megias D, Aicher A, Heeschen C. The miR-25-93-106b cluster regulates tumor tumor invasion and immune evasion via modulation of CXCL12 and PD-L1. Mol Cancer. 2017;16:148. https://doi.org/10.1186/s12943-017-0718-4.

    Article  Google Scholar 

  45. Gorczynski RM, Zhu F. Checkpoint blockade in solid tumors and B cell malignancies, with special consideration of the role of CD200. Cancer Res and Manage. 2017;9:601–9. https://doi.org/10.2147/CMAR.S147326.

    Article  Google Scholar 

  46. Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013;32:303–15.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gorczynski RM, Zhu F, Chen Z, Kos O, Khatri I. A comparison of serum miRNAs influencing metastatic growth of EMT6 vs 4THM tumor cells in wild-type and CD200R1KO mice. Breast Cancer Res Treat. 2017;162:255–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the CIHR (Canada) to RMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald M. Gorczynski.

Ethics declarations

Conflict of interest

All authors confirm they have no conflicts of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorczynski, R.M., Erin, N., Maqbool, T. et al. Characterization of an in vitro model system to explore control of tumor invasion of EMT6 and 4THM breast tumors by CD200:CD200R interactions. Breast Cancer 25, 547–559 (2018). https://doi.org/10.1007/s12282-018-0851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-018-0851-y

Keywords

Navigation