Log in

The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The VosA-VelB heterocomplex governs expression of several genes associated with fungal development and secondary metabolism. In this study, we have investigated the functions of one of the VosA-VelB-activated developmental genes vadJ in development and production of the mycotoxin sterigmatocystin in the model fungus Aspergillus nidulans. The vadJ gene is predicted to encode a 957-amino acid length protein containing a highly conserved sensor histidine kinase domain. The deletion of vosA or velB resulted in decreased mRNA levels of vadJ throughout the life cycle, suggesting that VosA and VelB are necessary for proper expression of vadJ. Nullifying vadJ led to highly restricted colony growth, lowered formation of asexual spores, and about two-fold reduction in conidial viability. Conversely, the deletion of vadJ resulted in elevated production of sexual fruiting bodies and sterigmatocystin. These suggest that VadJ is necessary for proper coordination of asexual and sexual development, and sterigmatocystin production. In accordance with this idea, the deletion of vadJ led to elevated mRNA levels of the two key sexual developmental activators esdC and nsdD. In summary, the putative sensor histidine kinase VadJ represses sexual development and sterigmatocystin production, but activates asexual development in A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T.H., Boylan, M.T., and Timberlake, W.E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Adams, T.H., Wieser, J.K., and Yu, J.H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, Y.L., Gerke, J., Park, H.S., Bayram, Ö., Neumann, P., Ni, M., Dickmanns, A., Kim, S.C., Yu, J.H., Braus, G.H., et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol. 11, e1001750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayram, Ö. and Braus, G.H. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Bayram, Ö., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N.J., Keller, N.P., Yu, J.H., et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.

    Article  CAS  PubMed  Google Scholar 

  • Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N., and Fischer, R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 1833–1838.

    Article  CAS  PubMed  Google Scholar 

  • Böhmer, I., Spadinger, A., and Ebel, F. 2020. Functional comparison of the group III hybrid histidine kinases TcsC of Aspergillus fumigatus and NikA of Aspergillus nidulans. Med. Mycol. 58, 362–371.

    Article  PubMed  CAS  Google Scholar 

  • Boylan, M.T., Mirabito, P.M., Willett, C.E., Zimmerman, C.R., and Timberlake, W.E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol. Cell. Biol. 7, 3113–3118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, D.W., Yu, J.H., Kelkar, H.S., Fernandes, M., Nesbitt, T.C., Keller, N.P., Adams, T.H., and Leonard, T.J. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 93, 1418–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champe, S.P., Nagle, D.L., and Yager, L.N. 1994. Sexual sporulation. Prog. Ind. Microbiol. 29, 429–454.

    CAS  PubMed  Google Scholar 

  • Cook, L.C., LaSarre, B., and Federle, M.J. 2013. Interspecies communication among commensal and pathogenic streptococci. mBio 4, e00382–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crowe, J.H. 2007. Trehalose as a “chemical chaperone”: fact and fantasy. Adv. Exp. Med. Biol. 594, 143–158.

    Article  PubMed  Google Scholar 

  • Dyer, P.S. and O’Gorman, C.M. 2012. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36, 165–192.

    Article  CAS  PubMed  Google Scholar 

  • Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R.

    Article  CAS  PubMed  Google Scholar 

  • Eom, T.J., Moon, H., Yu, J.H., and Park, H.S. 2018. Characterization of the velvet regulators in Aspergillus flavus. J. Microbiol. 56, 893–901.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J.C. and Larsen T.O. 2015. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 99, 7859–7877.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., and Abe, K 2005. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56, 1246–1261.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, K., Katsuno, Y., Urao, T., Yabe, T., Yamada-Okabe, T., Yamada-Okabe, H., Yamagata, Y., Abe, K., and Nakajima, T. 2002. Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl. Environ. Microbiol. 68, 5304–5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzia, A., Etxebeste, O., Rodríguez-Romero, J., Fischer, R., Espeso, E.A., and Ugalde, U. 2013. Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus Aspergillus nidulans. Eukaryot. Cell 12, 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara, D., Asano, Y., Marui, J., Furukawa, K., Kanamaru, K., Kato, M., Abe, K., Kobayashi, T., Yamashino, T., and Mizuno, T. 2007. The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci. Biotechnol. Biochem. 71, 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, D., Matsubayashi, Y., Marui, J., Furukawa, K., Yamashino, T., Kanamaru, K., Kato, M., Abe, K., Kobayashi, T., and Mizuno, T. 2007. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Biosci. Biotechnol. Biochem. 71, 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, D., Mizuno, T., and Abe, K. 2009. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 73, 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, D., Takahashi-Nakaguchi, A., Toyotome, T., Yoshimi, A., Abe, K., Kamei, K., Gonoi, T., and Kawamoto, S. 2013. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS ONE 8, e80881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, K.H., Han, K.Y., Yu, J.H., Chae, K.S., Jahng, K.Y., and Han, D.M. 2001. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Han, K.H., Kim, J.H., Moon, H., Kim, S., Lee, S.S., Han, D.M., Jahng, K.Y., and Chae, K.S. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genet. Biol. 45, 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Hayner, G.A., Khetan, S., and Paulick, M.G. 2017. Quantification of the disaccharide trehalose from biological samples: a comparison of analytical methods. ACS Omega 2, 5813–5823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Käfer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19, 33–131.

    Article  PubMed  Google Scholar 

  • Kim, M.J., Jung, W.H., Son, Y.E., Yu, J.H., Lee, M.K., and Park, H.S. 2019. The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J. Microbiol. 57, 893–899.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.J., Lee, M.K., Pham, H.Q., Gu, M.J., Zhu, B., Son, S.H., Hahn, D., Shin, J.H., Yu, J.H., Park, H.S., et al. 2020. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans. Genes 11, 103.

    Article  CAS  PubMed Central  Google Scholar 

  • Kwon, N.J., Shin, K.S., and Yu, J.H. 2010. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47, 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Lan, N., Yue, Q., An, Z., and Bills, G.F. 2020. Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus Aspergillus pachycristatus. J. Ind. Microbiol. Biotechnol. 47, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.K., Kwon, N.J., Choi, J.M., Lee, I.S., Jung, S., and Yu, J.H. 2014. NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics 197, 159–173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, M.A. and Timberlake, W.E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Mol. Cell. Biol. 11, 55–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli, S.D. 1994. Aspergillus nidulans as an experimental organism. Prog. Ind. Microbiol. 29, 33–58.

    CAS  PubMed  Google Scholar 

  • Mirabito, P.M., Adams, T.H., and Timberlake, W.E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Möglich, A. 2019. Signal transduction in photoreceptor histidine kinases. Protein Sci. 28, 1923–1946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni, M. and Yu, J.H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2, e970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojeda-López, M., Chen, W., Eagle, C.E., Gutiérrez, G., Jia, W.L., Swilaiman, S.S., Huang, Z., Park, H.S., Yu, J.H., Cánovas, D., et al. 2018. Evolution of asexual and sexual reproduction in the Aspergilli. Stud. Mycol. 91, 37–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, H.S., Jun, S.C., Han, K.H., Hong, S.B., and Yu, J.H. 2017a. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv. Appl. Microbiol. 100, 161–202.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.S., Lee, M.K., Kim, S.C., and Yu, J.H. 2017b. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS ONE 12, e0177099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, H.S., Ni, M., Jeong, K.C., Kim, Y.H., and Yu, J.H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS ONE 7, e45935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.S. and Yu, J.H. 2016. Developmental regulators in Aspergillus fumigatus. J. Microbiol. 54, 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.S., Yu, Y.M., Lee, M.K., Maeng, P.J., Kim, S.C., and Yu, J.H. 2015. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5, 10199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarikaya Bayram, Ö., Latgé, J.P., and Bayram, Ö. 2018. MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Curr. Genet. 64, 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Spadinger, A. and Ebel, F. 2017. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int. J. Med. Microbiol. 307, 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A., Kanamaru, K., Azuma, N., Kato, M., and Kobayashi, T. 2008. GFP-tagged expression analysis revealed that some histidine kinases of Aspergillus nidulans show temporally and spatially different expression during the life cycle. Biosci. Biotechnol. Biochem. 72, 428–434.

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Pérez, I., Sánchez, O., Kawasaki, L., Georgellis, D., and Aguirre, J. 2007. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryot. Cell 6, 1570–1583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Virginia, M., Appleyard, C.L., McPheat, W.L., and Stark, M.J. 2000. A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr. Genet. 37, 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z., Ali, A., Igbalajobi, O.A., Streng, C., Leister, K., Krauß, N., Lamparter, T., and Fischer, R. 2019. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in Aspergillus nidulans. Mol. Microbiol. 112, 1814–1830.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Domínguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973–981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was founded by the National Natural Science Foundation of China (31971564) and Natural Science Foundation of Jiangsu Normal University (19XSRX024) for Yanxia Zhao. The work at UW-Madison was support by the National Institute of Food and Agriculture, United States Department of Agriculture, Hatch project 1009695 to Jae-Hyuk Yu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifa Zheng or Jae-Hyuk Yu.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Conflict of Interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Lee, MK., Lim, J. et al. The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans. J Microbiol. 59, 746–752 (2021). https://doi.org/10.1007/s12275-021-1055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1055-2

Keywords

Navigation