Log in

SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Caulobacter crescentus is an aquatic Gram-negative bacterium that lives in nutrient-poor environments. Like several other aquatic and phytopathogenic bacteria, Caulobacter cells have a relatively large number of genes predicted to encode TonB-dependent receptors (TBDRs). TBDRs transport nutrients across the outer membrane using energy from the proton motive force. We identified one TBDR gene, sucA, which is situated within a cluster of genes predicted to encode a lacI-family transcription factor (sucR), amylosucrase (sucB), fructokinase (sucC), and an inner membrane transporter (sucD). Given its genomic neighborhood, we proposed that sucA encodes a transporter for sucrose. Using RT-qPCR, we determined that expression of sucABCD is strongly induced by sucrose in the media and repressed by the transcription factor, SucR. Furthermore, cells with a deletion of sucA have a reduced uptake of sucrose. Although cells with a non-polar deletion of sucA can grow with sucrose as the sole carbon source, cells with a polar deletion that eliminates expression of sucABCD cannot grow with sucrose as the sole carbon source. These results show that the suc locus is essential for sucrose utilization while SucA functions as one method of sucrose uptake in Caulobacter crescentus. This work sheds light on a new carbohydrate utilization locus in Caulobacter crescentus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanvillain, S., Meyer, D., Boulanger, A., Lautier, M., Guynet, C., Denance, N., Vasse, J., Lauber, E., and Arlat, M. 2007. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2, e224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulanger, A., Zischek, C., Lautier, M., Jamet, S., Rival, P., Carrère, S., Arlat, M., and Lauber, E. 2014. The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. MBio 5, e01527–01514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun, V. 2006. Energy transfer between biological membranes. ACS Chem. Biol. 1, 352–354.

    Article  PubMed  CAS  Google Scholar 

  • Chow, V., Shantharaj, D., Guo, Y., Nong, G., Minsavage, G.V., Jones, J.B., and Preston, J.F. 2015. Xylan utilization regulon in Xanthomonas citri pv. citri strain 306: gene expression and utilization of oligoxylosides. Appl. Environ. Microbiol. 81, 2163–2172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis, P.D. and Brun, Y.V. 2010. Getting in the loop: Regulation of development in Caulobacter crescentus. Microbiol. Mol. Biol. Rev. 74, 13–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Boer, H.A., Comstock, L.J., and Vasser, M. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80, 21–25.

    Article  PubMed  Google Scholar 

  • Dejean, G., Blanvillain-Baufume, S., Boulanger, A., Darrasse, A., Duge de Bernonville, T., Girard, A.L., Carrere, S., Jamet, S., Zischek, C., Lautier, M., et al. 2013. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol. 198, 899–915.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbeis, S., Lohmiller, S., Valdebenito, M., Leicht, S., and Braun, V. 2008. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J. Bacteriol. 190, 5230–5238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ely, B. 1991. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372–384.

    Article  PubMed  CAS  Google Scholar 

  • Evinger, M. and Agabian, N. 1977. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hottes, A.K., Meewan, M., Yang, D., Arana, N., Romero, P., McAdams, H.H., and Stephens, C. 2004. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. 186, 1448–1461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jordan, L.D., Zhou, Y., Smallwood, C.R., Lill, Y., Ritchie, K., Yip, W.T., Newton, S.M., and Klebba, P.E. 2013. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. Proc. Natl. Acad. Sci. USA 110, 11553–11558.

    Article  PubMed  Google Scholar 

  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–462.

    Article  PubMed  CAS  Google Scholar 

  • Koebnik, R. 2005. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 13, 343–347.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., Lourenço, R.F., Bernhardt, J., Albrecht, D., Schüler, J., Hecker, M., and Gomes, S.L. 2015. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. BMC Microbiol. 15, 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasker, K., Schrader, J.M., Men, Y., Marshik, T., Dill, D.L., McAdams, H.H., and Shapiro, L. 2016. CauloBrowser: A systems biology resource for Caulobacter crescentus. Nucleic Acids Res. 44, D640–645.

    Article  PubMed  CAS  Google Scholar 

  • Lim, H.N., Lee, Y., and Hussein, R. 2011. Fundamental relationship between operon organization and gene expression. Proc. Natl. Acad. Sci. USA 108, 10626–10631.

    Article  PubMed  Google Scholar 

  • Lohmiller, S., Hantke, K., Patzer, S.I., and Braun, V. 2008. TonBdependent maltose transport by Caulobacter crescentus. Microbiology 154, 1748–1754.

    Article  PubMed  CAS  Google Scholar 

  • Martens, E.C., Koropatkin, N.M., Smith, T.J., and Gordon, J.I. 2009. Complex glycan catabolism by the human gut microbiota: The bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzon, R.R., Braz, V.S., da Silva Neto, J.F., and do Valle Marques, M. 2014. Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins. BMC Genomics 15, 734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meisenzahl, A.C., Shapiro, L., and Jenal, U. 1997. Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J. Bacteriol. 179, 592–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neugebauer, H., Herrmann, C., Kammer, W., Schwarz, G., Nordheim, A., and Braun, V. 2005. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 187, 8300–8311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nierman, W.C., Feldblyum, T.V., Laub, M.T., Paulsen, I.T., Nelson, K.E., Eisen, J.A., Heidelberg, J.F., Alley, M.R., Ohta, N., Maddock, J.R., et al. 2001. Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 98, 4136–4141.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noinaj, N., Guillier, M., Barnard, T.J., and Buchanan, S.K. 2010. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Presley, G.N., Payea, M.J., Hurst, L.R., Egan, A.E., Martin, B.S., and Periyannan, G.R. 2014. Extracellular gluco-oligosaccharide degradation by Caulobacter crescentus. Microbiology 160, 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Ried, J.L. and Collmer, A. 1987. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R.C., Mohr, C.D., and Shapiro, L. 1996. Developmental programs in bacteria. Curr. Top. Dev. Biol. 34, 207–257.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, K.R., Taylor, J.A., and Bowers, L.M. 2010. The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane β-barrel proteins in Caulobacter crescentus. Microbiology 156, 742–756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabri, S., Nielsen, L.K., and Vickers, C.E. 2013. Molecular control of sucrose utilization in Escherichia coli W, an efficient sucroseutilizing strain. Appl. Environ. Microbiol. 79, 478–487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saier, M.H. 2000. Families of transmembrane sugar transport proteins. Mol. Microbiol. 35, 699–710.

    Article  PubMed  CAS  Google Scholar 

  • Salamov, V.S.A. and Solovyevand, A. 2011. Automatic annotation of microbial genomes and metagenomic sequences. pp. 61–78. In Li, R.W. (ed.), Metagenomics and its applications in agriculture. Nova Science Publishers, Hauppauge, NY,USA.

    Google Scholar 

  • Schauer, K., Rodionov, D.A., and de Reuse, H. 2008. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem. Sci. 33, 330–338.

    CAS  Google Scholar 

  • Shine, J. and Dalgarno, L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature 254, 34–38.

    Article  PubMed  CAS  Google Scholar 

  • Thanbichler, M., Iniesta, A.A., and Shapiro, L. 2007. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Bowers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modrak, S.K., Melin, M.E. & Bowers, L.M. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. J Microbiol. 56, 648–655 (2018). https://doi.org/10.1007/s12275-018-8225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8225-x

Keywords

Navigation