Log in

A passive, reusable, and resonating wearable sensing system for on-demand, non-invasive, and wireless molecular stress biomarker detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The significant impact of stress on health necessitates accurate assessment methods, where traditional questionnaires lack reliability and objectivity. Current advancements like wearables with electrocardiogram (ECG) and galvanic skin response (GSR) sensors face accuracy and artifact challenges. Molecular biosensors detecting cortisol, a critical stress hormone, present a promising solution. However, existing cortisol assays, requiring saliva, urine, or blood, are complex, expensive, and unsuitable for continuous monitoring. Our study introduces a passive, molecularly imprinted polymer-radio-frequency (MIP-RF) wearable sensing system for real-time, non-invasive sweat cortisol assessment. This system is wireless, flexible, battery-free, reusable, environmentally stable, and designed for long-term monitoring, using an inductance-capacitance transducer. The transducer translates cortisol concentrations into resonant frequency shifts with high sensitivity (∼ 160 kHz/(log (µM))) across a physiological range of 0.025–1 µM. Integrated with near-field communication (NFC) for wireless and battery-free operation, and three-dimensional (3D)-printed microfluidic channel for in-situ sweat collection, it enables daily activity cortisol level tracking. Validation of cortisol circadian rhythm through morning and evening measurements demonstrates its effectiveness in tracking and monitoring sweat cortisol levels. A 28-day stability test and the use of cost-effective 3D nanomaterials printing enhance its economic viability and reusability. This innovation paves the way for a new era in realistic, on-demand health monitoring outside the laboratory, leveraging wearable technology for molecular stress biomarker detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, N. K.; Chung, S.; Sveiven, M.; Hall, D. A. Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer. ACS Omega 2021, 6, 27888–27897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, B.; Zhao, C. Z.; Wang, Z. Q.; Yang, K. A.; Cheng, X. B.; Liu, W. F.; Yu, W. Z.; Lin, S. Y.; Zhao, Y. C.; Cheung, K. M. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2022, 8, eabk0967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clow, A.; Hucklebridge, F.; Stalder, T.; Evans, P.; Thorn, L. The cortisol awakening response: More than a measure of HPA axis function. Neurosci. Biobehav. Rev. 2010, 35, 97–103.

    Article  CAS  PubMed  Google Scholar 

  4. Nicolaides, N. C.; Charmandari, E.; Chrousos, G. P.; Kino, T. Circadian endocrine rhythms: The hypothalamic–pituitary–adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318, 71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steckl, A. J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens. 2018, 3, 2025–2044.

    Article  CAS  PubMed  Google Scholar 

  6. Venugopal, M.; Arya, S. K.; Chornokur, G.; Bhansali, S. A realtime and continuous assessment of cortisol in ISF using electrochemical impedance spectroscopy. Sens. Actuators A Phys. 2011, 172, 154–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manenschijn, L.; Koper, J. W.; Lamberts, S. W. J.; Van Rossum, E. F. C. Evaluation of a method to measure long term cortisol levels. Steroids 2011, 76, 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  8. Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Segerstrom, S. C.; Miller, G. E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601–630.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goh, J.; Pfeffer, J.; Zenios, S. A. The relationship between workplace stressors and mortality and health costs in the United States. Manage. Sci. 2016, 62, 608–628.

    Article  Google Scholar 

  11. Laochai, T.; Yukird, J.; Promphet, N.; Qin, J. Q.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens. Bioelectron. 2022, 203, 114039.

    Article  CAS  PubMed  Google Scholar 

  12. Naik, A. R.; Zhou, Y. L.; Dey, A. A.; Arellano, D. L. G.; Okoroanyanwu, U.; Secor, E. B.; Hersam, M. C.; Morse, J.; Rothstein, J. P.; Carter, K. R. et al. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2022, 22, 156–169.

    Article  CAS  Google Scholar 

  13. Monk, C. S.; Hart, K. A.; Berghaus, R. D.; Norton, N. A.; Moore, P. A.; Myrna, K. E. Detection of endogenous cortisol in equine tears and blood at rest and after simulated stress. Vet. Ophthalmol. 2014, 17, 53–60.

    Article  CAS  PubMed  Google Scholar 

  14. Sekar, M.; Sriramprabha, R.; Sekhar, P. K.; Bhansali, S.; Ponpandian, N.; Pandiaraj, M.; Viswanathan, C. Review-Towards wearable sensor platforms for the electrochemical detection of cortisol. J. Electrochem. Soc. 2020, 167, 067508.

    Article  CAS  Google Scholar 

  15. Stevens, R. C.; Soelberg, S. D.; Near, S.; Furlong, C. E. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal. Chem. 2008, 80, 6747–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghaffari, R.; Yang, D. S.; Kim, J.; Mansour, A.; Wright, J. A.; Model, J. B.; Wright, D. E.; Rogers, J. A.; Ray, T. R. State of sweat: Emerging wearable systems for real-time, noninvasive sweat sensing and analytics. ACS Sens. 2021, 6, 2787–2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Z. Y.; Chen, H.; Ye, H. R.; Chen, Z. X.; Jaffrezic-Renault, N.; Guo, Z. Z. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens. Bioelectron. 2021, 190, 113451.

    Article  CAS  PubMed  Google Scholar 

  18. Kinnamon, D.; Ghanta, R.; Lin, K. C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 2017, 7, 13312.

    Article  PubMed  PubMed Central  Google Scholar 

  19. An, J. E.; Kim, K. H.; Park, S. J.; Seo, S. E.; Kim, J.; Ha, S.; Bae, J.; Kwon, O. S. Wearable cortisol aptasensor for simple and rapid realtime monitoring. ACS Sens. 2022, 7, 99–108.

    Article  CAS  PubMed  Google Scholar 

  20. Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf. A Physicochem. Eng. Aspects 2016, 495, 11–19.

    Article  CAS  Google Scholar 

  21. Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L. J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive Cortisol detection. Biosens. Bioelectron. 2022, 206, 114142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, W. X.; Yin, L.; Sempionatto, J. R.; Moon, J. M.; Teymourian, H.; Wang, J. Touch-based stressless cortisol sensing. Adv. Mater. 2021, 33, 2008465.

    Article  CAS  Google Scholar 

  23. Li, Y. X.; Luo, L. X.; Kong, Y. Q.; Li, Y. J.; Wang, Q. S.; Wang, M. Q.; Li, Y.; Davenport, A.; Li, B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biesens. Bioelectron. 2024, 249, 116018.

    Article  CAS  Google Scholar 

  24. Betlem, K.; Down, M. P.; Foster, C. W.; Akthar, S.; Eersels, K.; Van Grinsven, B.; Cleij, T. J.; Banks, C. E.; Peeters, M. Development of a flexible MlP-based biosensor platform for the thermal detection of neurotransmitters. MRS Adv. 2018, 3, 1569–1574.

    Article  CAS  Google Scholar 

  25. BelBruno, J. J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119.

    Article  CAS  PubMed  Google Scholar 

  26. Ashley, J.; Shahbazi, M. A.; Kant, K.; Chidambara, V. A.; Wolff, A.; Bang, D. D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615.

    Article  CAS  PubMed  Google Scholar 

  27. Sheibani, S.; Capua, L.; Kamaei, S.; Akbari, S. S. A.; Zhang, J. R.; Guerin, H.; Ionescu, A. M. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2021, 2, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv, X. L.; Li, C. F.; Que, Y. H.; Li, G. F.; Hou, X. J.; Li, Y. J.; Li, L. F.; Sun, Y. B.; Guo, Y. S. Experimental demonstration of broadband impedance matching using coupled electromagnetic resonators. Sci. Rep. 2020, 10, 7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piekarz, I.; Sorocki, J.; Górska, S.; Bartsch, H.; Rydosz, A.; Smolarz, R.; Wincza, K.; Gruszczynski, S. High sensitivity and selectivity microwave biosensor using biofunctionalized differential resonant array implemented in LTCC for Escherichia coli detection. Measurement 2023, 208, 112473.

    Article  Google Scholar 

  30. Chen, R. G.; Van Wyk, J. D.; Wang, S.; Odendaal, W. G. Technologies and characteristics of integrated EMI filters for switch mode power supplies. In 2004 IEEE 35thAnnual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, pp 4873–4880.

  31. Khodapanahandeh, M.; Babaeihaselghobi, A.; Badri Ghavifekr, H. Design and simulation of a novel RF-MEMS tunable narrow band LC filter in the UHF band. Microsyst. Technol. 2021, 27, 325–334.

    Article  Google Scholar 

  32. Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

    Article  Google Scholar 

  33. Takamatsu, T.; Sijie, Y.; Miyake, T. Wearable, implantable, parity-time symmetric bioresonators for extremely small biological signal monitoring. Adv. Mater. Technol. 2023, 8, 2201704.

    Article  CAS  Google Scholar 

  34. Huang, Q. A.; Dong, L.; Wang, L. F. LC passive wireless sensors toward a wireless sensing platform: Status, prospects, and challenges. J. Microelectromech. Syst. 2016, 25, 822–841.

    Article  CAS  Google Scholar 

  35. Nabavi, S.; Anabestani, H.; Bhadra, S. A printed paper-based RFID tag for wireless humidity sensing. In 2022 IEEE Sensors, Dallas, USA, 2022, pp, 1–4

  36. Mazrouei, R.; Velasco, V.; Esfandyarpour, R. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies. Sci. Rep. 2020, 10, 14669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tavares-Negrete, J. A.; Babayigit, C.; Najafikoshnoo, S.; Lee, S. W.; Boyraz, O.; Esfandyarpour, R. A novel 3D-bioprinting technology of orderly extruded multi-materials via photopolymerization. Adv. Mater. Technol. 2023, 8, 2201926.

    Article  CAS  Google Scholar 

  38. Velasco, V.; Joshi, K.; Chen, J. M.; Esfandyarpour, R. Personalized drug efficacy monitoring chip. Anal. Chem. 2019, 91, 14927–14935.

    Article  CAS  PubMed  Google Scholar 

  39. Esfandyarpour, R.; Esfandyarpour, H.; Javanmard, M.; Harris, J. S.; Davis, R. W. Electrical detection of protein biomarkers using nanoneedle biosensors. MRS OPL 2012, 1414, mrsf11–1414.

    Google Scholar 

  40. Esfandyarpour, R.; Javanmard, M.; Koochak, Z.; Esfandyarpour, H.; Harris, J. S.; Davis, R. W. Thin film nanoelectronic probe for protein detection. MRS OPL 2013, 1572, 1–6.

    Article  Google Scholar 

  41. Yi, Q.; Najafikhoshnoo, S.; Das, P.; Noh, S.; Hoang, E.; Kim, T.; Esfandyarpour, R. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv. Mater. Technol. 2022, 7, 2101034.

    Article  CAS  Google Scholar 

  42. Yi, Q.; Pei, X. C.; Das, P.; Qin, H. T.; Lee, S. W.; Esfandyarpour, R. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022, 101, 107511.

    Article  CAS  Google Scholar 

  43. Nikbakhtnasrabadi, F.; Hosseini, E. S.; Dervin, S.; Shakthivel, D.; Dahiya, R. Smart bandage with inductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly-L-lactide nanofibers. Adv. Electron. Mater. 2022, 8, 2101348.

    Article  CAS  Google Scholar 

  44. Ali, L.; Wang, C.; Meng, F. Y.; Adhikari, K. K.; Wei, Y. C.; Zhao, M. High-sensitivity accurate characterization of complex permittivity using inter-digital capacitor-based planar microwave sensor. In 2027 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2021, pp, 295–298

  45. Sontimuang, C.; Suedee, R.; Dickert, F. Interdigitated capacitive biosensor based on molecularly imprinted polymer for rapid detection of Hev b1 latex allergen. Anal. Biochem. 2011, 410, 224–233.

    Article  CAS  PubMed  Google Scholar 

  46. Das, P.; Najafikhoshnoo, S.; Tavares-Negrete, J. A.; Yi, Q.; Esfandyarpour, R. An in-vivo-mimicking 3D lung cancer-on-a-chip model to study the effect of external stimulus on the progress and inhibition of cancer metastasis. Bioprinting 2022, 28, e00243.

    Article  Google Scholar 

  47. Kim, H.; Kim, Y. S.; Mahmood, M.; Kwon, S.; Zavanelli, N.; Kim, H. S.; Rim, Y. S.; Epps, F.; Yeo, W. H. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv. Sci. 2020, 7, 2000810.

    Article  CAS  Google Scholar 

  48. Kalra, A.; Lowe, A.; Al-Jumaily, A. Mechanical behaviour of skin: A review. J. Mater. Sci. Eng. 2016, 5, 1000254.

    Google Scholar 

  49. Wang, B. H.; Huang, W.; Chi, L. F.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754.

    Article  CAS  PubMed  Google Scholar 

  50. Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

    Article  CAS  PubMed  Google Scholar 

  51. Sun, D.; Zhang, Y.; Liu, Y. F.; Wang, Z. G.; Chen, X. C.; Meng, Z. Y.; Kang, S. F.; Zheng, Y. Y.; Cui, L. F.; Chen, M. L. et al. In-situ homodispersely immobilization of Ag@AgCl on chloridized g-C3N4 nanosheets as an ultrastable plasmonic photocatalyst. Chem. Eng. J. 2020, 384, 123259.

    Article  CAS  Google Scholar 

  52. NajafiKhoshnoo, S.; Kim, T.; Tavares-Negrete, J. A.; Pei, X. C.; Das, P.; Lee, S. W.; Rajendran, J.; Esfandyarpour, R. A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv. Mater. Technol. 2023, 8, 2201655.

    Article  CAS  Google Scholar 

  53. Lee, S. W.; Pei, X. C.; Rajendran, J.; Esfandyarpour, R. A wireless and battery-free wearable pressure sensing system for human-machine interaction and health monitoring. IEEE J. Flexible Electron. 2023, 2, 439–447.

    Article  Google Scholar 

  54. Mei, H.; Zhao, X.; Gui, X. C.; Lu, D. W.; Han, D. Y.; **ao, S. S.; Cheng, L. F. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding. Ceram. Int. 2019, 45, 17144–17151.

    Article  CAS  Google Scholar 

  55. Zhu, X. H.; Liu, K.; Lu, Z. B.; Xu, Y. P.; Qi, S. S.; Zhang, G. G. Effect of oxygen atoms on graphene: Adsorption and do**. Phys. E Low Dimens. Syst. Nanostruct. 2020, 117, 113827.

    Article  CAS  Google Scholar 

  56. Rajendran, J. Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film. J. Hazard. Mater. 2023, 449, 130979.

    Article  CAS  PubMed  Google Scholar 

  57. Al-Hetlani, E.; D’Cruz, B.; Amin, M. O. A 3D miniaturized solid-state chemiluminescence sensor based on ruthenium functionalized polymeric monolith for the detection of pharmaceutical drugs. J. Mater. Sci. 2020, 55, 13232–13243.

    Article  CAS  Google Scholar 

  58. Gillan, L.; Jansson, E. Molecularly imprinted polymer on roll-to-roll printed electrodes as a single use sensor for monitoring of cortisol in sweat. Flex. Print. Electron. 2022, 7, 025014.

    Article  CAS  Google Scholar 

  59. Yulianti, E. S.; Rahman, S. F.; Whulanza, Y. Molecularly imprinted polymer-based sensor for electrochemical detection of cortisol. Biosensors 2022, 12, 1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Semitekolos, D.; Kainourgios, P.; Jones, C.; Rana, A.; Koumoulos, E. P.; Charitidis, C. A. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos. Part B Eng. 2018, 155, 237–243.

    Article  CAS  Google Scholar 

  61. **ng, Y.; Sun, X. M.; Li, B. H. Poly(methacrylic acid)-modified chitosan for enhancement adsorption of water-soluble cationic dyes. Polym. Eng. Sci. 2009, 49, 272–280.

    Article  CAS  Google Scholar 

  62. Liu, D.; Pan, J. L.; Tang, J. H.; Lian, N. Preparation of polymethacrylate monolith modified with cysteine for the determination of Cr(III) ions. RSC Adv. 2018, 8, 24906–24912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chawla, V.; Ha, D. S. An overview of passive RFID. IEEE Commun. Mag. 2007, 45, 11–17.

    Article  Google Scholar 

  64. Elbasheir, M. S.; Saeed, R. A.; Edam, S. Measurement and simulation-based exposure assessment at a far-field for a multitechnology cellular site up to 5G NR. IEEE Access 2022, 10, 56888–56900.

    Article  Google Scholar 

  65. Fernández, M.; Guerra, D.; Gil, U.; Trigo, I.; Peña, I.; Arrinda, A. Measurements and analysis of temporal and spatial variability of WiFi exposure levels in the 2.4 GHz frequency band. Measurement 2020, 149, 106970.

    Article  Google Scholar 

  66. Wagih, M.; Komolafe, A.; Weddell, A. S.; Beeby, S. Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission. IEEE Open J. Antennas Propag. 2022, 3, 398–411.

    Article  Google Scholar 

  67. Yang, C. P.; Su, Q. P.; Zheng, S. B.; Nori, F. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators. Phys. Rev. A 2016, 93, 042307.

    Article  Google Scholar 

  68. Lathiya, P.; Wang, J. Near-field communications (NFC) for wireless power transfer (WPT): An overview. In Wireless Power Transfer-Recent Development, Applications and New Perspectives. Zellagui, M., Ed.; IntechOpen: London, 2021, pp, 95–122.

    Google Scholar 

  69. Ofosu Addo, E.; Kommey, B.; Selasi Agbemenu, A.; Kumbong, H. On the design and implementation of efficient antennas for high frequency-radio frequency identification read/write devices. Eng. Rep. 2021, 3, e12407.

    Article  Google Scholar 

  70. Unger, C.; Lieberzeit, P. A. Molecularly imprinted thin film surfaces in sensing: Chances and challenges. React. Funct. Polym. 2021, 161, 104855.

    Article  CAS  Google Scholar 

  71. Ansell, R. J. Characterization of the binding properties of molecularly imprinted polymers. In Molecularly Imprinted Polymers in Biotechnology. Mattiasson, B.; Ye, L., Eds.; Springer: Cham, 2015, pp 51–93

    Chapter  Google Scholar 

  72. Hourlier-Fargette, A.; Schon, S.; Xue, Y. G.; Avila, R.; Li, W. H.; Gao, Y. W.; Liu, C.; Kim, S. B.; Raj, M. S.; Fields, K. B. et al. Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity. Lab Chip 2020, 20, 4391–4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mustafa, M.; Rizwan, M.; Kashif, M.; Khan, T.; Waseem, M.; Annuk, A. LC passive wireless sensor system based on two switches for detection of triple parameters. Sensors 2022, 22, 3024.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Raul, J. S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem. 2004, 37, 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  75. Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. H. M. The detection of cortisol in human sweat: Implications for measurement of cortisol in hair. Ther. Drug Monit. 2014, 36, 30–34.

    Article  CAS  PubMed  Google Scholar 

  76. Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050.

    Article  CAS  Google Scholar 

  77. Hubert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hddogenn sensors—A review. Sens. Actuators B: Chem. 2011, 157, 329–352.

    Article  Google Scholar 

  78. Kim, T.; Yi, Q.; Hoang, E.; Esfandyarpour, R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv. Mater. Technol. 2021, 6, 2001021.

    Article  CAS  Google Scholar 

  79. Joshi, K.; Javani, A.; Park, J.; Velasco, V.; Xu, B. Z.; Razorenova, O.; Esfandyarpour, R. A machine learning-assisted nanoparticle-printed biochip for real-time single cancer cell analysis. Adv. Biosyst. 2020, 4, 2000160.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the start-up funds provided to R. E. by the Henry Samueli School of Engineering and the Department of Electrical Engineering and Computer Science at the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Esfandyarpour.

Electronic Supplementary Material

Supplementary material, approximately 34.7 MB.

12274_2024_6738_MOESM2_ESM.pdf

Electronic Supplementary Material: A passive, reusable, and resonating wearable sensing system for on-demand, non-invasive, and wireless molecular stress biomarker detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakoma, S., Pei, X., Qin, H. et al. A passive, reusable, and resonating wearable sensing system for on-demand, non-invasive, and wireless molecular stress biomarker detection. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6738-7

Keywords

Navigation