Log in

Biophysical-driven piezoelectric and aligned nanofibrous scaffold promotes bone regeneration by re-establishing physiological electrical microenvironment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The initial healing stages of bone fracture is a complex physiological process involving a series of spatially and temporally overlap** events, including pathogen clearance, immunological modulation, and osteogenesis. In this study, we have developed a piezoelectric and aligned nanofibrous scaffold composed of ZnO@PCL/PVDF with multiple antibacterial, immunomodulatory, and osteogenic effects using electrospinning technology. This scaffold’s piezoelectric signal output under ultrasound (US) control can be similar to the physiological electrical signals of healthy bone tissue, creating a truly biomimetic electrical microenvironment in the bone defect. In vitro studies have shown that ZnO@PCL/PVDF scaffold significantly enhances the proliferation, migration, and osteogenic differentiation of MC3T3-E1 cells under piezoelectric drive provided by ultrasound. Furthermore, the scaffold exhibits inhibitory effects on the growth of E. coli and S. aureus, as well as the ability to induce M2 macrophage polarization, indicating potent antibacterial and immunomodulatory properties. In vivo experiments demonstrated that the ZnO@PCL/PVDF scaffold can accelerate the repair of mandibular defects in rats, effectively inhibit bacterial colonization, and reduce inflammatory responses. Altogether, this study confirms that the newly developed ZnO@PCL/PVDF scaffold effectively promotes bone repair by truly mimicking the endogenous electrical microenvironment and precisely regulating the temporospatial disorders of initial bone healing, thus providing a simple and effective solution for bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jian, G. Y.; Li, D. Z.; Ying, Q. W.; Chen, X.; Zhai, Q. M.; Wang, S.; Mei, L.; Cannon, R. D.; Ji, P.; Liu, W. Z. et al. Dual photo-enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing. Adv. Healthc. Mater. 2023, 12, 2300469.

    Article  CAS  Google Scholar 

  2. Zhang, M.; Matinlinna, J. P.; Tsoi, J. K. H.; Liu, W. L.; Cui, X.; Lu, W. W.; Pan, H. B. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview. J. Orthop. Translat. 2020, 22, 26–33.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, Y.; Goh, C.; Shrestha, A. Biomaterial properties modulating bone regeneration. Macromol. Biosci. 2021, 21, 2000365.

    Article  CAS  Google Scholar 

  4. Sun, M. L.; Wang, J. M.; Huang, X. B.; Hang, R. Q.; Han, P. D.; Guo, J. Q.; Yao, X. H.; Chu, P. K.; Zhang, X. Y. Ultrasound-driven radical chain reaction and immunoregulation of piezoelectric-based hybrid coating for treating implant infection. Biomaterials 2024, 307, 122532.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, H.; Dong, H.; Tang, Z.; Chen, Y.; Liu, Y. C.; Wang, M.; Wei, X. H.; Wang, N.; Bao, S. S.; Yu, D. M. et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes antiinflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 2023, 293, 121990.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L. Y.; Pang, Y. Y.; Tang, Y. J.; Wang, X. Y.; Zhang, D. X.; Zhang, X.; Yu, Y. J.; Yang, X. P.; Cai, Q. A biomimetic piezoelectric scaffold with sustained Mg2+ release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration. Bioact. Mater. 2023, 25, 399–414.

    CAS  PubMed  Google Scholar 

  7. Liu, Z. R.; Wan, X. Y.; Wang, Z. L.; Li, L. L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications. Adv. Mater. 2021, 33, 2007429.

    Article  CAS  Google Scholar 

  8. Rajabi, A. H.; Jaffe, M.; Arinzeh, T. L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015, 24, 12–23.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y.; An, Q.; Zhang, S. T.; Ma, Z. Q.; Hu, X. T.; Feng, M. C.; Zhang, Y. H.; Zhao, Y. T. A healing promoting wound dressing with tailor-made antibacterial potency employing piezocatalytic processes in multi-functional nanocomposites. Nanoscale 2022, 14, 2649–2659.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X.; Wan, X. Y.; Sui, B. Y.; Hu, Q. H.; Liu, Z. R.; Ding, T. T.; Zhao, J.; Chen, Y. X.; Wang, Z. L.; Li, L. L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact. Mater. 2024, 35, 346–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson, A. J.; Pérez-Nava, A.; Ali, S. C.; González-Campos, J. B.; Holloway, J. L.; Cosgriff-Hernandez, E. M. Comparative analysis of fiber alignment methods in electrospinning. Matter 2021, 4, 821–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, T.; Qu, M. H.; Carlos, C.; Gu, L.; **, F.; Yuan, T.; Wu, X. W.; **ao, J. J.; Wang, T.; Dong, W. et al. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 2021, 33, 2006093.

    Article  CAS  Google Scholar 

  13. Azimi, B.; Milazzo, M.; Lazzeri, A.; Berrettini, S.; Uddin, M. J.; Qin, Z.; Buehler, M. J.; Danti, S. Electrospinning piezoelectric fibers for biocompatible devices. Adv. Healthc. Mater. 2020, 9, 1901287.

    Article  CAS  Google Scholar 

  14. Hoop, M.; Chen, X. Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasoundmediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep. 2017, 7, 4028.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao, F. J.; Zhang, C. G.; Liu, J.; Liu, L.; Cao, X. D.; Chen, X. F.; Lei, B.; Shao, L. Q. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chem. Eng. J. 2020, 402, 126203.

    Article  CAS  Google Scholar 

  16. Felice, B.; Sánchez, M. A.; Socci, M. C.; Sappia, L. D.; Gómez, M. I.; Cruz, M. K.; Felice, C. J.; Martí, M.; Pividori, M. I.; Simonelli, G. et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 724–738.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, Y.; Xu, Y.; Qian, Y.; Chen, X.; Ouyang, Y. M.; Yuan, W. E. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy 2020, 69, 104411.

    Article  CAS  Google Scholar 

  18. Sarkar, L.; Sushma, M. V.; Yalagala, B. P.; Rengan, A. K.; Singh, S. G.; Vanjari, S. R. K. ZnO nanoparticles embedded silk fibroin-a piezoelectric composite for nanogenerator applications. Nanotechnology 2022, 33, 265403.

    Article  CAS  Google Scholar 

  19. Hossain, S. I.; Kukushkina, E. A.; Izzi, M.; Sportelli, M. C.; Picca, R. A.; Ditaranto, N.; Cioffi, N. A review on montmorillonite-based nanoantimicrobials: State of the art. Nanomaterials 2023, 13, 848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. **a, Y.; Fan, X.; Yang, H.; Li, L.; He, C.; Cheng, C.; Haag, R. ZnO/nanocarbons-modified fibrous scaffolds for stem cell-based osteogenic differentiation. Small 2020, 16, 2003010.

    Article  CAS  Google Scholar 

  21. Wen, Z.; Shi, X. Y.; Li, X. J.; Liu, W. C.; Liu, Y. K.; Zhang, R. Y.; Yu, Y. Q.; Su, J. S. Mesoporous TiO2 coatings regulate ZnO nanoparticle loading and Zn2+ release on titanium dental implants for sustained osteogenic and antibacterial activity. ACS Appl. Mater. Interfaces 2023, 15, 15235–15249.

    Article  CAS  PubMed  Google Scholar 

  22. Fan, W.; Zhang, C.; Liu, Y.; Wang, S. J.; Dong, K.; Li, Y.; Wu, F.; Liang, J. H.; Wang, C. L.; Zhang, Y. Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Res. 2023, 16, 11612–11620.

    Article  CAS  Google Scholar 

  23. Sun, H. S.; Zheng, K.; Zhou, T.; Boccaccini, A. R. Incorporation of zinc into binary SiO2-CaO mesoporous bioactive glass nanoparticles enhances anti-inflammatory and osteogenic activities. Pharmaceutics 2021, 13, 2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, Y.; Cheng, C. Q.; Wang, X. Y.; Yuan, Z. C.; Sun, B. B.; El-Newehy, M.; Abdulhameed, M. M.; Fang, B.; Mo, X. M. Aspirin-loaded anti-inflammatory ZnO-SiO2 aerogel scaffolds for bone regeneration. ACS Appl. Mater. Interfaces, in press, DOI: https://doi.org/10.1021/acsami.3c17152.

  25. Szewczyk, P. K.; Gradys, A.; Kim, S. K.; Persano, L.; Marzec, M.; Kryshtal, A.; Busolo, T.; Toncelli, A.; Pisignano, D.; Bernasik, A., et al. Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Appl. Mater. Interfaces. 2020, 12, 13575–13583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, W. T.; Sun, T. Z.; Zhang, J.; Hu, X. T.; Yang, M.; Han, L. W.; Xu, G.; Zhao, Y. T.; Li, Z. H. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton’s jelly based on stem cell recruitment and its application in bone tissue engineering. Mater. Today Bio. 2023, 18, 100528.

    Article  CAS  PubMed  Google Scholar 

  27. Cai, K. Z.; Jiao, Y. L.; Quan, Q.; Hao, Y. L.; Liu, J.; Wu, L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound. Bioact. Mater. 2021, 6, 4073–4082.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Alahzm, A. M.; Alejli, M. O.; Ponnamma, D.; Elgawady, Y.; Al-Maadeed, M. A. A. Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. J. Mater. Sci. Mater. Electron. 2021, 32, 14610–14622.

    Article  CAS  Google Scholar 

  29. Kim, M.; Wu, Y. S.; Kan, E. C.; Fan, J. T. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers 2018, 10, 745.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh, B. K.; Tripathi, S. p-n homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow-red region of visible spectrum. J. Lumin. 2018, 198, 427–432.

    Article  CAS  Google Scholar 

  31. Liang, D.; Yang, M. W.; Guo, B. L.; Cao, J. J.; Yang, L.; Guo, X. D. Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways. Biol. Trace Elem. Res. 2012, 146, 340–348.

    Article  CAS  PubMed  Google Scholar 

  32. Li, C. X.; Sun, F. B.; Tian, J. J.; Li, J. H.; Sun, H. D.; Zhang, Y.; Guo, S. G.; Lin, Y. H.; Sun, X. D.; Zhao, Y. Continuously released Zn2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact. Mater. 2023, 24, 361–375.

    CAS  PubMed  Google Scholar 

  33. Zhao, Y. T.; Li, J. T.; Liu, L. L.; Wang, Y.; Ju, Y.; Zeng, C.; Lu, Z. H.; **e, D. H.; Guo, J. S. Zinc-based tannin-modified composite microparticulate scaffolds with balanced antimicrobial activity and osteogenesis for Infected bone defect repair. Adv. Healthc. Mater. 2023, 12, e2300303.

    Article  PubMed  Google Scholar 

  34. Yasuda, I. Electrical callus and callus formation by electret. Clin. Orthop. Relat. Res. 1977, 53–56.

  35. Zheng, T. Y.; Huang, Y. Q.; Zhang, X. H.; Cai, Q.; Deng, X. L.; Yang, X. P. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J. Mater. Chem. B 2020, 8, 10221–10256.

    Article  CAS  PubMed  Google Scholar 

  36. Aydemir Sezer, U.; Ozturk, K.; Aru, B.; Yanıkkaya Demirel, G.; Sezer, S.; Bozkurt, M. R. Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration. J. Mater. Sci. Mater. Med. 2017, 28, 19.

    Article  PubMed  Google Scholar 

  37. Sun, T. W.; Yu, W. L.; Zhu, Y. J.; Chen, F.; Zhang, Y. G.; Jiang, Y. Y.; He, Y. H. Porous nanocomposite comprising ultralong hydroxyapatite nanowires decorated with zinc-containing nanoparticles and chitosan: Synthesis and application in bone defect repair. Chem. -Eur. J. 2018, 24, 8809–8821.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, C. P.; Liu, Z. X.; Zhang, Y. H.; Ma, L.; Song, E. Q.; Song, Y. “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis. 2020, 11, 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miri, A.; Mahdinejad, N.; Ebrahimy, O.; Khatami, M.; Sarani, M. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109981.

    Article  CAS  PubMed  Google Scholar 

  40. Fotouhiardakani, F.; Mohammadi, M.; Mashayekhan, S. ZnO-incorporated polyvinylidene fluoride/poly (ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering. Appl. Phys. A 2022, 128, 654.

    Article  CAS  Google Scholar 

  41. Ribeiro, C.; Moreira, S.; Correia, V.; Sencadas, V.; Rocha, J. G.; Gama, F. M.; Ribelles, J. G.; Lanceros-Méndez, S. Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv. 2012, 2, 11504–11509.

    Article  CAS  Google Scholar 

  42. Bhang, S. H.; Jang, W. S.; Han, J.; Yoon, J. K.; La, W. G.; Lee, E.; Kim, Y. S.; Shin, J. Y.; Lee, T. J.; Baik, H. K. et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 2017, 27, 1603497.

    Article  Google Scholar 

  43. Parangusan, H.; Ponnamma, D.; Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khare, D.; Basu, B.; Dubey, A. K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020, 258, 120280.

    CAS  PubMed  Google Scholar 

  45. Huang, X. B.; Das, R.; Patel, A.; Duc Nguyen, T. Physical stimulations for bone and cartilage regeneration. Regen. Eng. Transl. Med. 2018, 4, 216–237.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fan, B.; Guo, Z.; Li, X. K.; Li, S. K.; Gao, P.; **ao, X.; Wu, J.; Shen, C.; Jiao, Y. L.; Hou, W. T. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact. Mater. 2020, 5, 1087–1101.

    PubMed  PubMed Central  Google Scholar 

  47. Chen, J.; Li, S. J.; Jiao, Y. L.; Li, J. D.; Li, Y. B.; Hao, Y. L.; Zuo, Y. In vitro study on the piezodynamic therapy with a BaTiO3-coating titanium scaffold under low-intensity pulsed ultrasound stimulation. ACS Appl. Mater. Interfaces 2021, 13, 49542–49555.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y.; Dzidotor, G.; Le, T. T.; Vinikoor, T.; Morgan, K.; Curry, E. J.; Das, R.; Mcclinton, A.; Eisenberg, E.; Apuzzo, L. N. et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci. Transl. Med. 2022, 14, eabi7282.

    Article  CAS  PubMed  Google Scholar 

  49. Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A. K. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 242–253.

    Article  CAS  PubMed  Google Scholar 

  50. Münchow, E. A.; Albuquerque, M. T. P.; Zero, B.; Kamocki, K.; Piva, E.; Gregory, R. L.; Bottino, M. C. Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent. Mater. 2015, 31, 1038–1051.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ye, J.; Li, B.; Li, M.; Zheng, Y. F.; Wu, S. L.; Han, Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact. Mater. 2022, 11, 181–191.

    CAS  PubMed  Google Scholar 

  52. Stefanowski, J.; Lang, A.; Rauch, A.; Aulich, L.; Köhler, M.; Fiedler, A. F.; Buttgereit, F.; Schmidt-Bleek, K.; Duda, G. N.; Gaber, T. et al. Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming Vessels. Front. Immunol. 2019, 10, 2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leppik, L.; Oliveira, K. M. C.; Bhavsar, M. B.; Barker, J. H. Electrical stimulation in bone tissue engineering treatments. Eur. J. Trauma. Emerg. Surg. 2020, 46, 231–244.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y. N.; Hu, M. R.; Wang, L.; Chen, W. D. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090.

    Article  CAS  Google Scholar 

  55. Wu, P.; Shen, L.; Liu, H. F.; Zou, X. H.; Zhao, J.; Huang, Y.; Zhu, Y. F.; Li, Z. Y.; Xu, C.; Luo, L. H. et al. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil. Med. Res. 2023, 10, 35.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Nos. 82151312, 82272493, and 82072406). The Bei**g Science Nova Program (No. 20220484155). The Natural Science Foundation of Shaanxi Province (No. 2023-YBSF-426). Bei**g Jishuitan Hospital Elite Young Scholar Programme (No. XKGG2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Shi, Jun Yan, Quanyi Guo or Yantao Zhao.

Electronic Supplementary Material

12274_2024_6673_MOESM1_ESM.pdf

Biophysical-driven piezoelectric and aligned nanofibrous scaffold promotes bone regeneration by re-establishing physiological electrical microenvironment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Ma, X., Yang, Y. et al. Biophysical-driven piezoelectric and aligned nanofibrous scaffold promotes bone regeneration by re-establishing physiological electrical microenvironment. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6673-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6673-7

Keywords

Navigation