Log in

Ligand effect in surface atomic sites of group VI B transition metals on ultrathin Pt nanowires for enhanced oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Increasing the utilization efficiency of platinum is critical for advancing proton exchange-membrane fuel cells (PEMFCs). Despite extensive research on catalysts for the cathodic oxygen reduction reaction (ORR), develo** highly active and durable Pt-based catalysts that can suppress surface dealloying in corrosive acid conditions remains challenging. Herein, we report a facile synthesis of bimetallic ultrathin PtM (M = Mo, W, and Cr) nanowires (NWs) composed of group VI B transition metal atomic sites anchored on the surface. These NWs possess uniform sizes and well-controlled atomic arrangements. Compared to PtW and PtCr catalysts, the PtMo0.05 NWs exhibit the highest half-wave potential of 0.935 V and a mass activity of 1.43 A·mgPt−1. Remarkably, they demonstrate a remarkable 23.8-fold enhancement in mass activity compared to commercial Pt/C for ORR, surpassing previously reported Pt-based catalysts. Additionally, the PtMo NWs cathode in membrane electrode assembly tests achieves a remarkable peak power density of 1.443 W·cm−2 (H2-O2 conditions at 80 °C), which is 1.09 times that of commercial Pt/C. The ligand effect in the bimetallic surface not only facilitates strong coupling between Mo (4d) and Pt (5d) atomic orbitals to hinder atom leaching but also modulates the d-states of active site, significantly optimizing the adsorption of key oxygen (O and OH) species and accelerating the rate-determining step in ORR pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  2. Li, J. J.; **a, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

    Article  CAS  PubMed  Google Scholar 

  3. **ao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

    Article  CAS  Google Scholar 

  4. Sun, Y. Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 2021, 12, 5984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; **e, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

    Article  CAS  PubMed  Google Scholar 

  6. Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

    Article  CAS  Google Scholar 

  7. Chen, Y. P.; Zheng, X. S.; Cai, J. Y.; Zhao, G. Q.; Zhang, B. X.; Luo, Z. X.; Wang, G. M.; Pan, H. G.; Sun, W. P. Sulfur do** triggering enhanced Pt-N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 2022, 12, 7406–7414.

    Article  Google Scholar 

  8. Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

    Article  CAS  Google Scholar 

  9. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  10. Li, X.; He, Y. H.; Cheng, S. B.; Li, B. Y.; Zeng, Y. C.; **e, Z. H.; Meng, Q. P.; Ma, L.; Kisslinger, K.; Tong, X. et al. Atomic structure evolution of Pt-Co binary catalysts: Single metal sites versus intermetallic nanocrystals. Adv. Mater. 2021, 33, 2106371.

    Article  CAS  Google Scholar 

  11. Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

    Article  CAS  PubMed  Google Scholar 

  12. Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; **a, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem. 2021, 133, 17976–17996.

    Article  Google Scholar 

  13. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci., 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  14. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  15. Cheng, Q. Q.; Yang, S.; Fu, C. H.; Zou, L. L.; Zou, Z. Q.; Jiang, Z.; Zhang, J. L.; Yang, H. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy Environ. Sci. 2022, 15, 278–286.

    Article  CAS  Google Scholar 

  16. Chang, F. F.; Bai, Z. Y.; Li, M.; Ren, M. Y.; Liu, T. C.; Yang, L.; Zhong, C. J.; Lu, J. Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett. 2020, 20, 2416–2422.

    Article  CAS  PubMed  Google Scholar 

  17. Hu, Y. Z.; Guo, X. Y.; Shen, T.; Zhu, Y.; Wang, D. L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022, 12, 5380–5387.

    Article  CAS  Google Scholar 

  18. Zaman, S.; Su, Y. Q.; Dong, C. L.; Qi, R. J.; Huang, L.; Qin, Y. Y.; Huang, Y. C.; Li, F. M.; You, B.; Guo, W. et al. Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202115835.

    Article  CAS  Google Scholar 

  19. He, T. O.; Wang, W. C.; Yang, X. L.; Shi, F. L.; Ye, Z. Y.; Zheng, Y. Z.; Li, F.; Wu, J. B.; Yin, Y. D.; **, M. S. Deposition of atomically thin Pt shells on amorphous palladium phosphide cores for enhancing the electrocatalytic durability. ACS Nano 2021, 15, 7348–7356.

    Article  CAS  PubMed  Google Scholar 

  20. **, H.; Xu, Z. W.; Hu, Z. Y.; Yin, Z. W.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S. H.; Dong, S. H.; Liu, J. F. et al. Mesoporous Pt@Pt-skin Pt3Ni core–shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Z. Y.; Zhao, Z. P.; Peng, B. S.; Duan, X. F.; Huang, Y. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301

    Article  CAS  Google Scholar 

  23. Feng, Q. C.; Wang, X. L.; Klingenhof, M.; Heggen, M.; Strasser, P. Low-Pt NiNC-supported PtNi nanoalloy oxygen reduction reaction electrocatalysts—In situ tracking of the atomic alloying process. Angew. Chem., Int. Ed. 2022, 61, e202203728.

    Article  CAS  Google Scholar 

  24. Wei, M.; Huang, L.; Li, L. B.; Ai, F.; Su, J. Z.; Wang, J. K. Coordinatively unsaturated PtCo flowers assembled with ultrathin nanosheets for enhanced oxygen reduction. ACS Catal. 2022, 12, 6478–6485.

    Article  CAS  Google Scholar 

  25. Tu, W. Z.; Luo, W. J.; Chen, C. L.; Chen, K.; Zhu, E. B.; Zhao, Z. P.; Wang, Z. L.; Hu, T.; Zai, H. C.; Ke, X. X. et al. Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2020, 30, 1908230.

    Article  CAS  Google Scholar 

  26. Zhang, Z.; Yang, S.; Jiang, R.; Sheng, T.; Shi, C.; Chen, Y.; Wang, L. Intensifying uneven charge distribution via geometric distortion engineering in atomically dispersed M-Nx/S sites for efficient oxygen electroreduction. Nano Res. 2022, 15, 8928–8935.

    Article  CAS  Google Scholar 

  27. Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

    Article  PubMed  Google Scholar 

  28. Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D. Surface enhanced infrared spectroscopy-Au (111-20 nm)/sulphuric acid-new aspects and challenges. Electrochim. Acta 2004, 49, 1233–1247.

    Article  CAS  Google Scholar 

  29. Li, P.; Jiao, Y. Z.; Ruan, Y. E.; Fei, H. G.; Men, Y. N.; Guo, C. L.; Wu, Y. E.; Chen, S. L. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. **ao, Z. H.; Chen, Y. G.; Wu, R. J.; He, Y. W.; Shi, C. F.; Wang, L. Y. OH regulator of highly dispersed Ru sites on host Pd nanocrystals for selective ethanol electro-oxidation. Nano Res. 2024, 17, 3863–3871.

    Article  CAS  Google Scholar 

  31. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 22275009), SINOPEC (contact No. 421028), and Fundamental Research Funds for the Central Universities (No. XK2020-02). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF). The authors would like to express their gratitude to Prof. Zhongbin Zhuang, Prof. Wei Zhu, and Mr. Cheng** Chen from BUCT for their assistance with the MEA test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueguang Chen, Chunfeng Shi or Leyu Wang.

Electronic Supplementary Material

12274_2024_6528_MOESM1_ESM.pdf

Ligand effect in surface atomic sites of group VI B transition metals on ultrathin Pt nanowires for enhanced oxygen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, Y., Wu, R. et al. Ligand effect in surface atomic sites of group VI B transition metals on ultrathin Pt nanowires for enhanced oxygen reduction. Nano Res. 17, 5298–5304 (2024). https://doi.org/10.1007/s12274-024-6528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6528-2

Keywords

Navigation