Log in

Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Glycerol is an alternative sustainable fuel for fuel cells, and efficient electrocatalyst is crucial for glycerol oxidation reaction (GOR). The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning. Herein, Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages (hNCNCs) by convenient ethylene glycol reduction and subsequent thermal reduction. The optimal Pt3Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity (5.9 \({\rm{A}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{Pt}}}}^{-1}\)), which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C, respectively. Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt3Sn alloying effect and Sn-enriched surface, the high dispersion of Pt3Sn active species due to N-participation, as well as the high accessibility of Pt3Sn active species due to the three-dimensional (3D) hierarchical architecture of hNCNC. This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozalp, N.; Abedini, H.; Abuseada, M.; Davis, R.; Rutten, J.; Verschoren, J.; Ophoff, C.; Moens, D. An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production. Renew. Sustain. Energy Rev. 2022, 162, 112427.

    Article  CAS  Google Scholar 

  2. Chen, H. H.; Tao, R.; Bang, K. T.; Shao, M. H.; Kim, Y. Anion exchange membranes for fuel cells: State-of-the-art and perspectives. Adv. Energy Mater. 2022, 12, 2200934.

    Article  CAS  Google Scholar 

  3. Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J Am. Chem. Soc. 2014, 136, 3937–3945.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, W.; Luo, S. P.; Sun, M. Z.; Wu, X. Y.; Zhou, Y. S.; Liao, Y. J.; Tang, M.; Fan, X. K.; Huang, B. L.; Quan, Z. W. High-entropy intermetallic ptrhbisnsb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 2022, 34, 2206276.

    Article  CAS  Google Scholar 

  5. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; **e, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    Article  CAS  Google Scholar 

  6. Liu, J. F.; Wang, Q. X.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst. Nano Res. 2023, 16, 2041–2048.

    Article  CAS  Google Scholar 

  7. Chen, Z. X.; Liu, C. B.; Zhao, X. X.; Yan, H.; Li, J.; Lyu, P.; Du, Y. H.; **, S. B.; Chi, K.; Chi, X. et al. Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv. Mater. 2019, 31, 1804763.

    Article  Google Scholar 

  8. Mou, H. S.; Chang, Q. W.; **e, Z. H.; Hwang, S.; Kattel, S.; Chen, J. G. Enhancing glycerol electrooxidation from synergistic interactions of platinum and transition metal carbides. Appl. Catal. B: Environ. 2022, 316, 121648.

    Article  CAS  Google Scholar 

  9. Cui, X. X.; Li, Y. L.; Zhao, M. Y.; Xu, Y. S.; Chen, L. L.; Yang, S. G.; Wang, Y. Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation. Nano Res. 2019, 12, 351–356.

    Article  CAS  Google Scholar 

  10. Wang, H. B.; Thia, L.; Li, N.; Ge, X. M.; Liu, Z. L.; Wang, X. Pd Nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 2015, 5, 3174–3180.

    Article  CAS  Google Scholar 

  11. Qi, J.; **n, L.; Chadderdon, D. J.; Qiu, Y.; Jiang, Y. B.; Benipal, N.; Liang, C. H.; Li, W. Z. Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl. Catal. B: Environ. 2014, 154–155, 360–368

    Article  Google Scholar 

  12. Lima, C. C.; Rodrigues, M. V. F.; Neto, A. F. M.; Zanata, C. R.; Pires, C. T. G. V. M. T.; Costa, L. S.; Solla-Gullón, J.; Fernández, P. S. Highly active Ag/C nanoparticles containing ultra-low quantities of sub-surface Pt for the electrooxidation of glycerol in alkaline media. Appl. Catal. B: Environ. 2020, 279, 119369.

    Article  CAS  Google Scholar 

  13. Houache, M. S. E.; Sandoval, M. G.; Safari, R.; Gaztañaga, F.; Escudero, F.; Hernández-Laguna, A.; Sainz-Díaz, C. I.; Botton, G. A.; Jasen, P. V.; Gonzáalez, E. A. et al. Morphology alteration of nickel microstructures for glycerol electrooxidation. J. Catal. 2021, 404, 348–361.

    Article  CAS  Google Scholar 

  14. Garcia, A. C.; Kolb, M. J.; van Nierop y Sanchez, C.; Vos, J.; Birdja, Y. Y.; Kwon, Y.; Tremiliosi-Filho, G.; Koper, M. T. M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal. 2016, 6, 4491–4500.

    Article  CAS  Google Scholar 

  15. Li, T.; Wang, Q. X.; Zhang, W. J.; Li, H. M.; Wang, Y.; Liu, J. F. Length-tunable Pd2Sn@Pt core-shell nanorods for enhanced ethanol electrooxidation with concurrent hydrogen production. Chem. Sci. 2023, 14, 9488–9495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizo, R.; Sebastian, D.; Lazaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246–254.

    Article  CAS  Google Scholar 

  17. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

    Article  CAS  Google Scholar 

  18. Liu, Y. F.; Wei, M. J.; Raciti, D.; Wang, Y. X.; Hu, P. F.; Park, J. H.; Barclay, M.; Wang, C. Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles. ACS Catal. 2018, 8, 10931–10937.

    Article  CAS  Google Scholar 

  19. Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

    Article  CAS  Google Scholar 

  20. Gao, F.; Zhang, Y. P.; Song, P. P.; Wang, J.; Song, T. X.; Wang, C.; Song, L.; Shiraishi, Y.; Du, Y. K. Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. J. Mater. Chem. A. 2019, 7, 7891–7896.

    Article  CAS  Google Scholar 

  21. Lai, J. P.; Lin, F.; Tang, Y. H.; Zhou, P.; Chao, Y. G.; Zhang, Y. L.; Guo, S. J. Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 2019, 9, 1800684.

    Article  Google Scholar 

  22. Wang, Q. X.; Liu, J. F.; Zhang, W.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. Branch-regulated palladium-antimony nanoparticles boost ethanol electro-oxidation to acetate. Inorg. Chem. 2022, 61, 6337–6346.

    Article  CAS  PubMed  Google Scholar 

  23. Wan, T. T.; Huang, X.; Li, S. C.; Li, Q. Y.; Yang, X. L.; Sun, Z. J.; **ang, D.; Wang, K.; Li, P.; Zhu, M. Z. Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation. Nano Res. 2023, 16, 6560–6567.

    Article  CAS  Google Scholar 

  24. Li, Z.; Qiu, G. F.; Jiang, Z. Z.; Zhuang, W. C.; Wu, J. J.; Du, X. H. Tuning concave Pt-Sn nanocubes for efficient ethylene glycol and glycerol electrocatalysis. Int. J. Hydrogen Energy 2018, 43, 22538–22547.

    Article  CAS  Google Scholar 

  25. Jiang, X. F.; Wang, X. B.; Shen, L. M.; Wu, Q.; Wang, Y. N.; Ma, Y. W.; Wang, X. Z.; Hu, Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. Chin. J. Catal. 2016, 37, 1149–1155.

    Article  CAS  Google Scholar 

  26. Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841

    Article  CAS  Google Scholar 

  27. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

    Article  CAS  Google Scholar 

  28. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, Z. Q.; Wu, Q.; Mao, K.; Chen, Y. G.; Du, L. Y.; Bu, Y. F.; Zhuo, O.; Yang, L. J.; Wang, X. Z.; Hu, Z. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal. 2018, 8, 8477–8483.

    Article  CAS  Google Scholar 

  30. Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; **e, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; **, Z.; Ma, Y. W. et al. Hydoophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.

    Article  CAS  PubMed  Google Scholar 

  32. **e, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352.

    Article  CAS  PubMed  Google Scholar 

  33. Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

    Article  Google Scholar 

  34. Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; **n, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93–95, 665–670.

    Article  Google Scholar 

  35. Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trap** and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luo, F.; Roy, A.; Silvioli, L.; Cullen, D. A.; Zitolo, A.; Sougrati, M. T.; Oguz, I. C.; Mineva, T.; Teschner, D.; Wagner, S. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 2020, 19, 1215–1223

    Article  CAS  PubMed  Google Scholar 

  37. Kim, J. H.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Choi, S. H.; Kim, W. B. Influence of Sn content on PtSn/C catalysts for electrooxidation of C1-C3 alcohols: Synthesis, characterization, and electrocatalytic activity. Appl. Catal. B: Environ. 2008, 82, 89–102.

    Article  CAS  Google Scholar 

  38. Zhang, Z. C.; Tian, X. C.; Zhang, B. W.; Huang, L.; Zhu, F. C.; Qu, X. M.; Liu, L.; Liu, S.; Jiang, Y. X.; Sun, S. G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy 2017, 34, 224–232.

    Article  Google Scholar 

  39. Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.

    Article  CAS  Google Scholar 

  40. Dai, C. C.; Sun, L. B.; Liao, H. B.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 2017, 356, 14–21.

    Article  CAS  Google Scholar 

  41. Kwon, Y.; Schouten, K. J. P.; Koper, M. T. M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 2011, 3, 1176–1185.

    Article  CAS  Google Scholar 

  42. Fang, Y.; Guo, S. Y.; Cao, D. J.; Zhang, G. L.; Wang, Q.; Chen, Y. Z.; Cui, P.; Cheng, S.; Zuo, W. S. Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation. Nano Res. 2022, 15, 3933–3939.

    Article  CAS  Google Scholar 

  43. Wang, Y.; Li, M. F.; Yang, Z. L.; Lai, W. C.; Ge, J. J.; Shao, M. H.; **ang, Y.; Chen, X. L.; Huang, H. W. A universal synthesis of ultrathin Pd-based nanorings for efficient ethanol electrooxidation. Mater. Horiz. 2023, 10, 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  44. Li, T. Y.; Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 2021, 14, 1472–1495.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the jointly financial support from the National Key Research and Development Program of China (No. 2021YFA1500900), the National Natural Science Foundation of China (Nos. 21832003, 21972061, and 52071174), the Natural Science Foundation of Jiangsu Province, Major Project (No. BK20212005), China Postdoctoral Science Foundation (No. 2022M711564), and the Fellowship of China National Postdoctoral Program for Innovative Talents (No. BX2021119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wu, **zhang Wang or Zheng Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhou, L., Xu, F. et al. Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation. Nano Res. 17, 4055–4061 (2024). https://doi.org/10.1007/s12274-023-6288-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6288-4

Keywords

Navigation