Log in

Long-range Pt-Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elaborated design of catalytic systems with a specifically tailored site distance to match the intermediates could substantially improve reaction kinetics and boost catalytic activity under unfavorable reaction conditions. Considering the lower energy barriers of water splitting upon the synergy of dual sites, constructing synergistic Pt-M (M: transition metal) dual sites is an effective way to boost Pt with highly catalytic hydrogen evolution reaction (HER) performance. An unconventional “Ni(OH)2-coated high-index Pt facets” was constructed to obtain long-range Pt-Ni dual sites, in which Ni composition as a water dissociation synergistic site can protect Pt from electrolyte corrosion and ensure efficient proton donation to Pt sites. The obtained long-range Pt-Ni dual sites present 3.84 mA·cm−1 of current density, which is 7.5 times specific activity higher than that of commercial Pt/C towards alkaline HER. The enhanced HER performance is attributed to synergistic catalysis on Pt-Ni dual sites accompanied by unconventional electron coupling. This work illustrates a new strategy to construct the long-range dual sites by unconventional strategy for fundamental electrocatalytic study of alkaline HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 2019, 10, 9165–9181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hua, W.; Sun, H. H.; Xu, F.; Wang, J. G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351.

    Article  CAS  Google Scholar 

  3. Wang, B.; Yang, F. L.; Feng, L. G. Recent advances in Co-based electrocatalysts for hydrogen evolution reaction. Small, in press, https://doi.org/10.1002/smll.202302866.

  4. Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43.

    Article  CAS  Google Scholar 

  5. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res, in press, https://doi.org/10.1007/s12274-023-5700-4.

  6. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  CAS  PubMed  Google Scholar 

  7. Meng, X. Y.; Yu, L.; Ma, C.; Nan, B.; Si, R.; Tu, Y. C.; Deng, J.; Deng, D. H.; Bao, X. H. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 2019, 61, 611–616.

    Article  CAS  Google Scholar 

  8. Puangsombut, P.; Tantavichet, N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt-Co catalysts. Rare Met. 2019, 38, 95–106.

    Article  CAS  Google Scholar 

  9. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  PubMed  Google Scholar 

  10. Yin, H. J.; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

  12. Shen, J.; Wang, D.S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Research Energy, in press, https://doi.org/10.26599/NRE.2023.9120096.

  13. Bender, J. T.; Petersen, A. S.; Østergaard, F. C.; Wood, M. A.; Heffernan, S. M. J.; Milliron, D. J.; Rossmeisl, J.; Resasco, J. Understanding cation effects on the hydrogen evolution reaction. ACS Energy Lett. 2023, 8, 657–665.

    Article  CAS  Google Scholar 

  14. Wu, S. H.; Li, C.; Wang, Y.; Zhuang, Y.; Pan, Y.; Wen, N.; Wang, S.; Zhang, Z. Z.; Ding, Z. X.; Yuan, R. S. et al. The Keto-switched photocatalysis of reconstructed covalent organic frameworks for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202309026.

    Article  CAS  Google Scholar 

  15. Yoo, S. H.; Aota, L. S.; Shin, S.; El-Zoka, A. A.; Kang, P. W.; Lee, Y.; Lee, H.; Kim, S. H.; Gault, B. Dopant evolution in electrocatalysts after hydrogen oxidation reaction in an alkaline environment. ACS Energy Lett. 2023, 8, 3381–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, F. Q.; Zhang, W. L.; Wan, H. B.; Li, C. X.; An, W. K.; Sheng, X.; Liang, X. Y.; Wang, X. P.; Ren, Y. L.; Zheng, X. et al. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett 2022, 33, 2259–2269.

    Article  Google Scholar 

  17. Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Science 2016, 2, e1501602.

    Google Scholar 

  18. Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

    Article  CAS  PubMed  Google Scholar 

  19. Tang, P.; Huang, P. Y.; Swallow, J. E. N.; Wang, C. B.; Gianolio, D.; Guo, H.; Warner, J. H.; Weatherup, R. S.; Pasta, M. Structure-property relationship of defect-trapped Pt single-site electrocatalysts for the hydrogen evolution reaction. ACS Catal. 2023, 13, 9558–9566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L.; Liu, Y. N.; Chen, Z. F.; Dai, Q. Z.; Dong, C. L.; Yang, B.; Li, Z. J.; Hu, X. B.; Lei, L. C.; Hou, Y. Theory-guided design of electron-deficient ruthenium cluster for ampere-level current density electrochemical hydrogen evolution. Nano Energy 2023, 115, 108694.

    Article  CAS  Google Scholar 

  21. Yang, W. W.; Li, M. Y.; Zhang, B. K.; Liu, Y. Z.; Zi, J. Z.; **ao, H.; Liu, X. Y.; Lin, J. K.; Zhang, H. Y.; Chen, J. et al. Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202304852.

  22. Zheng, X. Z.; Shi, X. Y.; Ning, H. H.; Yang, R.; Lu, B.; Luo, Q.; Mao, S. J.; **, L. L.; Wang, Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 2023, 14, 4209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; **, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456–461.

    Article  Google Scholar 

  24. Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ning, S.; Ou, H.; Li, Y.; Lv, C.; Wang, S.; Wang, D.; Ye, J. Co0–Coδ+ interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

    Article  CAS  Google Scholar 

  26. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res, in press, https://doi.org/10.1002/smll.202302866.

  27. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    Article  CAS  PubMed  Google Scholar 

  28. Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

    Article  CAS  Google Scholar 

  29. Zhu, S. Q.; Qin, X. P.; **ao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

    Article  CAS  Google Scholar 

  30. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  31. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    Article  CAS  Google Scholar 

  32. Qin, Y. C.; Zhang, W. L.; Wang, F. Q.; Li, J. J.; Ye, J. Y.; Sheng, X.; Li, C. X.; Liang, X. Y.; Liu, P.; Wang, X. P. et al. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202200899.

    Article  CAS  Google Scholar 

  33. Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

    Article  CAS  Google Scholar 

  34. Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.

    Article  CAS  PubMed  Google Scholar 

  35. Qin, Y. C.; Wang, F. Q.; Liu, P.; Ye, J. Y.; Wang, Q.; Wang, Y.; Jiang, G. C.; Liu, L. J.; Zhang, P. F.; Liu, X. B. et al. Enhancement of CH3CO* adsorption by editing d-orbital states of Pd to boost C–C bond cleavage of ethanol eletrooxidation. Sci China Chem, in press, https://doi.org/10.1007/s11426-023-1756-8.

  36. Li, W. H.; Yang, J.; Wang, D. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  37. Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

    Article  CAS  Google Scholar 

  38. Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; **, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 pooduttion. Angew. Chem., Int. Ed. 2023, 22, e202308800.

    Google Scholar 

  39. Zheng, X. B.; Yang, J. R,; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv, 2023, 9, eadi8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

    Article  CAS  Google Scholar 

  41. Wang, P. T.; Shao, Q.; Cui, X. N.; Zhu, X.; Huang, X. Q. Hydroxide-membrane-coated Pt3Ni nanowires as highly efficient catalysts for selective hydrogenation reaction. Adv. Funct. Mater. 2018, 28, 1705918.

    Article  Google Scholar 

  42. Cheng, R. Q.; Min, Y. L.; Li, H. X.; Fu, C. P. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 2023, 115, 108718.

    Article  CAS  Google Scholar 

  43. Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

    Article  CAS  PubMed  Google Scholar 

  44. Hunt, S. T.; Milina, M.; Wang, Z. S.; Román-Leshkov, Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 2016, 9, 3290–3301.

    Article  CAS  Google Scholar 

  45. Kye, J.; Shin, M.; Lim, B.; Jang, J. W.; Oh, I.; Hwang, S. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 2013, 7, 6017–6023.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, B.; Zhu, H.; Zou, M. L.; Liu, X. R.; Yang, H.; Zhang, M.; Wu, W. W.; Yao, J. M.; Du, M. L. Design and fabrication of size-controlled Pt-Au bimetallic alloy nanostructure in carbon nanofibers: A bifunctional material for biosensors and the hydrogen evolution reaction. J. Mater. Sci. 2017, 52, 8207–8218.

    Article  CAS  Google Scholar 

  47. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Red. 2020, 49, 3072–3106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22305101), the Natural Science Foundation of Jiangsu Province (No. BK20231032), the Fundamental Research Funds for the Central Universities (No. JUSRP123020), Doctoral Science Research Foundation of Zhengzhou University of Light Industry (No. 2021BSJJ008), the Scientific and Technological Project of Henan Province (Nos. 222102240079, 232102230139, and 212102210209), and Henan Province College Students Innovation Project (No. 202310462017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfang Zhang or Yao Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, P., Liu, B. et al. Long-range Pt-Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Res. 17, 3700–3706 (2024). https://doi.org/10.1007/s12274-023-6271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6271-0

Keywords

Navigation