Log in

Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries, known for their high energy density, are attracting extensive research interest as a promising next-generation energy storage technology. However, their widespread use has been hampered by certain issues, including the dissolution and migration of polysulfides, along with sluggish redox kinetics. Metal sulfides present a promising solution to these obstacles regarding their high electrical conductivity, strong chemical adsorption with polysulfides, and remarkable electrocatalytic capabilities for polysulfide conversion. In this review, the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries is systematically summarized, with a special focus on sulfur hosts and functional separators. The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials’ structure and electrochemical performances. Moreover, the remaining issues/challenges and future perspectives are highlighted. By offering a detailed understanding of the crucial roles of metal sulfides, this review dedicates to contributing valuable knowledge for the pursuit of high-efficiency Li-S batteries based on metal sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang, Z. H.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  2. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  3. Li, S. D.; Zhuang, Z. C.; **a, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

    CAS  Google Scholar 

  4. Zhuang, Z. H.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    ADS  CAS  Google Scholar 

  5. Kang, Q.; Li, Y.; Zhuang, Z. H.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    CAS  Google Scholar 

  6. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p−n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  7. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na−S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    CAS  PubMed  Google Scholar 

  8. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    CAS  PubMed  Google Scholar 

  9. **n, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

    CAS  PubMed  Google Scholar 

  10. Ma, L. B.; Lv, Y. H.; Wu, J. X.; Chen, Y. M.; **, Z. Recent advances in emerging non-lithium metal-sulfur batteries: A review. Adv. Energy Mater. 2021, 11, 2100770.

    CAS  Google Scholar 

  11. Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

    CAS  Google Scholar 

  12. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

    ADS  CAS  Google Scholar 

  13. Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

    ADS  CAS  PubMed  Google Scholar 

  14. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    CAS  PubMed  Google Scholar 

  15. Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

    CAS  Google Scholar 

  16. Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; **a, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

    ADS  CAS  Google Scholar 

  17. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  18. Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

    CAS  Google Scholar 

  19. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li−S battery. ACS Nano 2023, 17, 1653–1662.

    CAS  Google Scholar 

  20. Wang, Z. W.; Cheng, Y. W.; Wang, S. Y.; Xu, J.; Peng, B.; Luo, D.; Ma, L. B. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Res. 2023, 16, 9335–9343.

    ADS  CAS  Google Scholar 

  21. Hencz, Z.; Chen, H.; Wu, Z. Z.; Qian, S. S.; Chen, S.; Gu, X. X.; Liu, X. H.; Yan, C.; Zhang, S. Q. Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2022, 2, 20210131.

    PubMed  PubMed Central  Google Scholar 

  22. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    ADS  CAS  PubMed  Google Scholar 

  23. Wang, Y. Z.; Huang, X. X.; Zhang, S. Q.; Hou, Y. L. Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345.

    Google Scholar 

  24. Liu, Y. H.; Wang, C. Y.; Yang, S. L.; Cao, F. F.; Ye, H. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. J. Energy Chem. 2022, 66, 429–439.

    CAS  Google Scholar 

  25. Ma, L. B.; Wang, Y. R.; Wang, Z. W.; Wang, J. L.; Cheng, Y. W.; Wu, J. X.; Peng, B.; Xu, J.; Zhang, W.; **, Z. Wide-temperature operation of lithium-sulfur batteries enabled by multi-branched vanadium nitride. ACS Nano 2023, 17, 11527–11536.

    CAS  PubMed  Google Scholar 

  26. Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2208666.

    CAS  Google Scholar 

  27. Ren, L. T.; Liu, J.; Pato, A. H.; Wang, Y.; Lu, X. W.; Chandio, I. A.; Zhou, M. Y.; Liu, W.; Xu, H. J.; Sun, X. M. Rational design of nanoarray structures for lithium-sulfur batteries: Recent advances and future prospects. Mater. Futures 2023, 2, 042103.

    ADS  Google Scholar 

  28. He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

    Google Scholar 

  29. Zeng, P.; Su, B.; Wang, X. L.; Li, X. Q.; Yuan, C.; Liu, G. L.; Dai, K. H.; Mao, J.; Chao, D. L.; Wang, Q. Y. et al. In situ reconstruction of electrocatalysts for lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2023, 33, 2301743.

    CAS  Google Scholar 

  30. Wang, F. F.; Li, J.; Zhao, J.; Yang, Y. X.; Su, C. L.; Zhong, Y. L.; Yang, Q. H.; Lu, J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, Opportunities, and challenges. ACS Mater. Lett. 2020, 2, 1450–1463.

    CAS  Google Scholar 

  31. Ye, Z. Q.; Sun, H. B.; Gao, H. H.; Sun, L. X.; Guo, J.; Jiang, Y.; Wu, C. C.; Zheng, S. J. Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium-sulfur batteries. Energy Storage Mater. 2023, 60, 102855.

    Google Scholar 

  32. Hu, X. H.; Huang, T.; Zhang, G. Y.; Lin, S. J.; Chen, R. W.; Chung, L.; He, J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord. Chem. Rev. 2023, 475, 214879.

    CAS  Google Scholar 

  33. Dong, Y. Y.; Li, T. T.; Cai, D.; Yang, S.; Zhou, X. M.; Nie, H. G.; Yang, Z. Progress and prospect of organic electrocatalysts in lithium-sulfur batteries. Front. Chem. 2021, 9, 703354.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Google Scholar 

  35. Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Henkelman, G. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.

    Google Scholar 

  36. Wu, L.; Yu, Y.; Dai, Y. Q.; Zhao, Y. F.; Zeng, W.; Liao, B.; Pang, H. Multisize CoS2 particles intercalated/coated-montmorillonite as efficient sulfur host for high-performance lithium-sulfur batteries. ChemSusChem 2022, 15, e202101991.

    CAS  PubMed  Google Scholar 

  37. Xu, S. Q.; Kwok, C. Y.; Zhou, L. D.; Zhang, Z. Z.; Kochetkov, L.; Nazar, L. F. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 2021, 31, 2004239.

    CAS  Google Scholar 

  38. Guo, T. Q.; Song, Y. Z.; Sun, Z. T.; Wu, Y. H.; **a, Y.; Li, Y. Y.; Sun, J. H.; Jiang, K.; Dou, S. X.; Sun, J. Y. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries. J. Energy Chem. 2020, 42, 34–42.

    Google Scholar 

  39. Wang, D. S.; Zhao, S.; Li, F.; He, L.; Zhao, Y. Y.; Zhao, H. N.; Liu, Y. H.; Wei, Y. J.; Chen, G. Insight into the Anchoring and Catalytic Effects of VO2 and VS2 Nanosheets as Sulfur Cathode Hosts for Li−S Batteries. ChemSusChem 2019, 12, 4671–4678.

    CAS  PubMed  Google Scholar 

  40. Yi, Y. K.; Liu, Z. C.; Yang, P.; Wang, T.; Zhao, X. W.; Huang, H. Y.; Cheng, Y. H.; Zhang, J. Y.; Li, M. T. MoS2 nanorods with inner caves through synchronous encapsulation of sulfur for high performance Li−S cathodes. J. Energy Chem. 2020, 45, 18–24.

    Google Scholar 

  41. Xu, Z. L.; Onofrio, N.; Wang, J. Boosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 17646–17656.

    CAS  Google Scholar 

  42. Abraham, A. M.; Kammampata, S. P.; Ponnurangam, S.; Thangadurai, V. Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li−S battery: Combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 2019, 11, 35729–35737.

    Google Scholar 

  43. Liu, X. C.; Yang, Y.; Wu, J. J.; Liu, M.; Zhou, S. P.; Levin, B. D. A.; Zhou, X. D.; Cong, H. J.; Muller, D. A.; Ajayan, P. M. et al. Dynamic hosts for high-performance Li−S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction. ACS Energy Lett. 2018, 3, 1325–1330.

    CAS  Google Scholar 

  44. Chung, S. H.; Luo, L.; Manthiram, A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries. ACS Energy Lett. 2018, 3, 568–573.

    CAS  Google Scholar 

  45. Dai, C. L.; Hu, L. Y.; Li, X. Y.; Xu, Q. J.; Wang, R.; Liu, H.; Chen, H.; Bao, S. J.; Chen, Y. M.; Henkelman, G. et al. Chinese knot-like electrode design for advanced Li−S batteries. Nano Energy 2018, 53, 354–361.

    CAS  Google Scholar 

  46. Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnur, H, Bigall, N. C.; Feldhoff, A. et al. Nitrogen do** improves the immobilization and catalytic effects of Co9S8 in Li−S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

    CAS  Google Scholar 

  47. Tang, J. L.; **, C. Q.; Huo, L. X.; Du, S. Y.; Xu, X. H.; Yan, Y. T.; Jiang, K.; Shang, L. Y.; Zhang, J. Z.; Li, Y. W. et al. Ultrathin Fe−ReS2 nanosheets as electrocatalysts for accelerating sulfur reduction in Li−S batteries. ACS Appl. Mater. Interfaces 2022, 14, 50870–50879.

    CAS  PubMed  Google Scholar 

  48. Zhou, W.; Ning, S. L.; Fan, B.; Wu, Q. K.; Mi, L.; Zhao, D. K.; Zhou, K.; Wang, N. One-dimensional confined p−n junction Co3S4/MoS2 interface nanorods significantly enhance polysulfide redox kinetics for Li−S batteries. J. Mater. Chem. A 2023, 11, 926–936.

    CAS  Google Scholar 

  49. Liu, K. L.; Zhang, X. D.; Miao, F. J.; Wang, Z.; Zhang, S. J.; Zhang, Y. S.; Zhang, P.; Shao, G. S. In situ electrochemical intercalation-induced phase transition to enhance catalytic performance for lithium-sulfur battery. Small 2021, 17, 2100065

    CAS  Google Scholar 

  50. **, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.

    Google Scholar 

  51. Zeng, P.; Zou, H.; Cheng, C.; Wang, L.; Yuan, C.; Liu, G. L.; Mao, J.; Chan, T. S.; Wang, Q. Y.; Zhang, L. In situ non-topotactic reconstruction-induced synergistic active centers for polysulfide cascade catalysis. Adv. Funct. Mater. 2023, 33, 2214770.

    CAS  Google Scholar 

  52. Wang, Y. Y.; **ong, Y. T.; Huang, Q. Y.; Bi, Z. X.; Zhang, Z. X.; Guo, Z. Z.; Wang, X. B.; Mei, T. A bifunctional VS2−Ti3C2 heterostructure electrocatalyst for boosting polysulfide redox in high performance lithium-sulfur batteries. J. Mater. Chem. A 2022, 10, 18866–18876.

    CAS  Google Scholar 

  53. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    ADS  CAS  PubMed  Google Scholar 

  54. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    CAS  PubMed  Google Scholar 

  55. Dong, Y. F.; Lu, P. F.; Shi, H. D.; Qin, J. Q.; Chen, J.; Ren, W. C.; Cheng, H. M.; Wu, Z. S. 2D hierarchical yolk–shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li−S batteries. J. Energy Chem. 2019, 36, 64–73.

    Google Scholar 

  56. Li, W. L.; Qian, J.; Zhao, T.; Ye, Y. S.; **ng, Y.; Huang, Y. X.; Wei, L.; Zhang, N. X.; Chen, N.; Li, L. et al. Boosting high-rate Li−S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 2019, 6, 1802362.

    Google Scholar 

  57. Li, H.; Wen, X. Z.; Shao, F.; Zhou, C.; Zhang, Y. F.; Hu, N. T.; Wei, H. Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chem. Eng. J. 2021, 412, 128562.

    CAS  Google Scholar 

  58. Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201

    Google Scholar 

  59. Wei, J.; Chen, B.; Su, H.; Jiang, C.; Li, X. T.; Qiao, S. S.; Zhang, H. Co9S8 nanotube wrapped with graphene oxide as sulfur hosts with ultra-high sulfur content for lithium-sulfur battery. Ceram. Int. 2021, 47, 2686–2693.

    CAS  Google Scholar 

  60. Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

    CAS  Google Scholar 

  61. He, D. Q.; Liu, J. B.; Zhang, B. X.; Wang, M.; Liu, C. Z.; Huo, Y. T.; Rao, Z. H. Enhancing adsorption and catalytic activity of Marigold-like In2S3 in lithium-sulfur batteries by vacancy modification. Chem. Eng. J. 2022, 427, 131711.

    CAS  Google Scholar 

  62. Shin, W.; Lu, J.; Ji, X. L. ZnS coating of cathode facilitates lean-electrolyte Li−S batteries. Carbon Energy 2019, 1, 165–172.

    CAS  Google Scholar 

  63. He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li−S batteries. Energy Environ. Sci. 2019, 12, 344–350.

    CAS  Google Scholar 

  64. Cheng, Z. B.; **ao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.

    Google Scholar 

  65. Li, F.; Wang, L.; Qu, G. M.; Hou, P. Y.; Kong, L. L.; Huang, J. Z.; Xu, X. J. An integrated approach to configure rGO/VS4/S composites with improved catalysis of polysulfides for advanced lithium-sulfur batteries. Chin. Chem. Lett. 2022, 33, 3909–3915.

    CAS  Google Scholar 

  66. Luo, L.; Li, J. Y.; Asl, H. Y.; Manthiram, A. In situ assembled VS4 as a polysulfide mediator for high-loading lithium-sulfur batteries. ACS Energy Lett. 2020, 5, 1177–1185.

    CAS  Google Scholar 

  67. Cui, B. W.; Cai, X. M.; Wang, W. Q.; Saha, P.; Wang, G. C. Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li−S batteries. J. Energy Chem. 2022, 66, 91–99.

    CAS  Google Scholar 

  68. Liu, M. M.; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 20788–20795.

    CAS  PubMed  Google Scholar 

  69. You, Y.; Ye, Y. W.; Wei, M. L.; Sun, W. J.; Tang, Q.; Zhang, J.; Chen, X.; Li, H. Q.; Xu, J. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2019, 335, 671–678.

    Google Scholar 

  70. Sun, L.; Liu, Y. X.; **e, J.; Fan. L. L.; Wu, J.; Jiang, R. Y.; **, Z. Polar Co9S8 anchored on Pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries. Chem. Eng. J. 2023, 451, 138370.

    CAS  Google Scholar 

  71. Luo, L.; Chung, S. H.; Manthiram, A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1801014.

    Google Scholar 

  72. Guo, D. Y.; Zhang, Z. H.; **, B.; Yu, Z. S.; Zhou, Z.; Chen, X. A. Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 3834–3844.

    CAS  Google Scholar 

  73. Gao, C.; Fang, C. Z.; Zhao, H. M.; Yang, J. Y.; Gu, Z. D.; Sun, W.; Zhang, W. N.; Li, S.; Xu, L. C.; Li, X. Y. et al. Rational design of multi-functional CoS@rGO composite for performance enhanced Li−S cathode. J. Power Sources 2019, 421, 132–138.

    ADS  CAS  Google Scholar 

  74. Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-do** of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 7491–7499.

    CAS  PubMed  Google Scholar 

  75. Zhang, R.; Dong, Y. T.; Al-Tahan, M. A.; Zhang, Y. Y.; Wei, R. P.; Ma, Y. H.; Yang, C. C.; Zhang, J. M. Insights into the sandwichlike ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries. J. Energy Chem. 2021, 60, 85–94.

    CAS  Google Scholar 

  76. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    ADS  CAS  PubMed  Google Scholar 

  77. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136.

    CAS  PubMed  Google Scholar 

  78. Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103–13112.

    CAS  Google Scholar 

  79. Tian, D.; Song, X. Q.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium-sulfur batteries. ACS Nano 2021, 15, 16515–16524.

    CAS  PubMed  Google Scholar 

  80. Liang, X. Q.; Cai, J. Y.; Qiu, S. S.; Niu, S. W.; Liu, Y. L.; Wang, X.; Wang, G. M.; Chen, Z.; Chen, M. H. Bidirectional catalyst design for lithium-sulfur batteries: Phase regulation cooperates with N-do**. J. Mater. Chem. A 2022, 10, 23780–23789.

    CAS  Google Scholar 

  81. Wang, S. Z.; Feng, S. P.; Liang, J. W.; Su, Q. M.; Zhao, F. P.; Song, H. J.; Zheng, M.; Sun, Q.; Song, Z. X.; Jia, X. H. et al. Insight into MoS2−MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003314.

    CAS  Google Scholar 

  82. Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-s loading Li−S batteries. Adv. Funct. Mater. 2019, 29, 1806724.

    Google Scholar 

  83. Shi, T. Y.; Zhao, C. Y.; Zhou, Y. X.; Yin, H. H.; Song, C. Q.; Qin, L.; Wang, Z. L.; Shao, H. B.; Yu, K. A special core-shell ZnS−CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 599, 416–426.

    ADS  CAS  PubMed  Google Scholar 

  84. Zhang, H.; Zou, M. C.; Zhao, W. Q.; Wang, Y. S.; Chen, Y. J.; Wu, Y. Z.; Dao, L. X.; Cao, A. Y. Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and longlife lithium-sulfur batteries. ACS Nano 2019, 13, 3982–3991.

    CAS  PubMed  Google Scholar 

  85. Cai, D.; Wang, Li, L.; Zhang, Y. P.; Li, J. Z.; Chen, D.; Tu, H. R.; Han, W. Self-assembled CdS quantum dots in carbon nanotubes: Induced polysulfide trap** and redox kinetics enhancement for improved lithium-sulfur battery performance. J. Mater. Chem. A 2019, 7, 806–815.

    CAS  Google Scholar 

  86. Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithiumsulfur batteries. ACS Nano 2018, 12, 4868–4876.

    CAS  PubMed  Google Scholar 

  87. Ma, Z. Y.; Liu, Y.; Gautam, J.; Liu, W. T.; Chishti, A. N.; Gu, J.; Yang, G.; Wu, Z.; Xu, J.; Chen, M. et al. Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li−S Batteries. Small 2021, 17, 2102710.

    CAS  Google Scholar 

  88. Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Liu, J.; **, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

    CAS  PubMed  Google Scholar 

  89. Wang, S. Z.; Chen, H. Y.; Liao, J. X.; Sun, Q.; Zhao, F. P.; Luo, J.; Lin, X. T.; Niu, X. B.; Wu, M. Q.; Li, R. Y. et al. Efficient trap** and catalytic conversion of polysulfides by VS4 nanosites for Li−S batteries. ACS Energy Lett. 2019, 4, 755–762.

    CAS  Google Scholar 

  90. Zhou, J.; Liu, X. J.; Zhou, J. B.; Zhao, H. Y.; Lin, N.; Zhu, L. Q.; Zhu, Y. C.; Wang, G. M.; Qian, Y. T. Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li−S batteries. Nanoscale Horiz. 2019, 4, 182–189.

    ADS  CAS  PubMed  Google Scholar 

  91. Zhao, S. Y.; Tian, X. H.; Zhou, Y. K.; Ma, B.; Natarajan, A. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 22–29.

    CAS  Google Scholar 

  92. He, J. R.; Bhargav, A.; Asl, H. Y.; Chen, Y. F.; Manthiram, A. 1T′-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li−S batteries. Adv. Energy Mater. 2020, 10, 2001017.

    CAS  Google Scholar 

  93. Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li−S batteries. Adv. Mater. 2019, 31, 1901220.

    Google Scholar 

  94. **ang, K. X.; Wen, X. Y.; Hu, J.; Wang, S. C.; Chen, H. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries. ChemSusChem 2019, 12, 3602–3614

    CAS  PubMed  Google Scholar 

  95. Zhao, X. S.; Zhang, D. A.; Sun, C. X.; Liu, J. J.; Zhao, T. M.; Wang, M.; Song, Y. T.; Xu, H. W.; Wang, Q. Synthesis of hollow S/FeS2@carbon nanotubes microspheres and their long-term cycling performances as cathode material for lithium-sulfur batteries. J. Electroanaly. Chem. 2022, 922, 116724.

    CAS  Google Scholar 

  96. Chen, C. H.; Lin, S. H.; Wu, Y. J.; Su, J. T.; Cheng, C. C.; Cheng, P. Y.; Ting, Y. C.; Lu, S. Y. MOF-derived cobalt disulfide/nitrogen-doped carbon composite polyhedrons linked with multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries. Chem. Eng. J. 2022, 431, 133924.

    CAS  Google Scholar 

  97. Zhang, X. Z.; Shang, C. Q.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. Constructing Co3S4 nanosheets coating n-doped carbon nanofibers as freestanding sulfur host for high-performance lithium-sulfur batteries. Adv. Sci. 2020, 7, 2002037.

    CAS  Google Scholar 

  98. Meng, T.; Gao, J. C.; Liu, Y. N.; Zhu, J. H.; Zhang, H.; Ma, L.; Xu, M. W.; Li, C. M.; Jiang, J. Highly puffed Co9S8/carbon nanofibers: A functionalized S carrier for superior Li−S batteries. ACS Appl. Mater. Interfaces 2019, 11, 26798–26806.

    CAS  PubMed  Google Scholar 

  99. Yao, S. S. Zhang, C. J.; **e, F. W.; Xue, S. K.; Gao, K. D.; Guo, R. D.; Shen, X. Q.; Li, T. B.; Qin, S. B. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofibers as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 2707–2715.

    CAS  Google Scholar 

  100. Luo, J.; Liu, X. F.; Lei, W.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Self-standing lotus root-like host materials for high-performance lithium-sulfur batteries. Adv. Fiber Mater. 2022, 4, 1656–1668.

    CAS  Google Scholar 

  101. Zhang, C. Y.; Sun, G. W.; Bai, Y. F.; Dai, Z.; Zhao, Y. R.; Gao, X. P.; Sun, G. Z.; Pan, X. B.; Pan, X. J.; Zhou, J. Y. Ultrastable lithium-sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides. J. Mater. Chem. A 2020, 8, 18358–18366.

    CAS  Google Scholar 

  102. Liu, Q. Y.; Sun, G. W.; Pan, J. L.; Wang, S. K.; Zhang, C. Y.; Wang, Y. C.; Gao, X. P.; Sun, G. Z.; Zhang, Z. X.; Pan, X. J. et al. Metal ion cutting-assisted synthesis of defect-rich mos2 nanosheets for high-rate and ultrastable Li2S catalytic deposition. ACS Appl. Mater. Interfaces 2022, 14, 37771–37781.

    CAS  PubMed  Google Scholar 

  103. Wang, J. Y.; Zhao, Y.; Li, G. R.; Luo, D.; Liu, J. B.; Zhang, Y. G.; Wang, X.; Shui, L. L.; Chen, Z. W. Aligned sulfur-deficient ZnS1−x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy 2021, 84, 105891.

    CAS  Google Scholar 

  104. Zeng, P.; Zhou, Z. Y.; Li, B.; Yu, H.; Zhou, X.; Chen, G. R.; Chang, B. B.; Chen, M. F.; Shu, H. B.; Su. J. C. et al. Insight into the catalytic role of defect-enriched vanadium sulfide for regulating the adsorption-catalytic conversion behavior of polysulfides in Li−S batteries. ACS Appl. Mater. Interfaces 2022, 14, 35833–35843.

    CAS  PubMed  Google Scholar 

  105. Guo, B. S.; Bandaru, S.; Dai, C. L.; Chen, H.; Zhang, Y. Q.; Xu, Q. J.; Bao, S. J.; Chen, M. Y.; Xu, M. W. Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 43707–43715.

    CAS  PubMed  Google Scholar 

  106. Chen, M. F.; Xu, W. T.; Jamil, S.; Jiang, S. X.; Huang, C.; Wang, X. Y.; Wang, Y.; Shu, H. B.; **ang, K. X.; Zeng, P. Multifunctional heterostructures for polysulfide suppression in highperformance lithium-sulfur cathode. Small 2018, 14, 1803134.

    Google Scholar 

  107. Yu, J.; **ao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li−S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

    CAS  Google Scholar 

  108. Li, M. R.; Peng, H. Y.; Pei, Y.; Wang, F.; Zhu, Y.; Shi, R. Y.; He, X. X.; Lei, Z. B.; Liu, Z. H.; Sun, J. MoS2 nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries. Nanoscale 2020, 12, 23636–23644.

    CAS  PubMed  Google Scholar 

  109. Shao, Q. J.; Lu, P. F.; Xu, L.; Guo, D. C.; Gao, J.; Wu, Z. S.; Chen, J. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li−S batteries. J. Energy Chem. 2020, 51, 262–271.

    Google Scholar 

  110. Wang, H. E.; Li, X. C.; Qin, N.; Zhao, X.; Cheng, H.; Cao, G. Z.; Zhang, W. J. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 2019, 7, 12068–12074.

    CAS  Google Scholar 

  111. He, T.; Ru, J. J.; Feng, Y. T.; Bi, D. P.; Zhang, J. S.; Gu, F.; Zhang, C.; Yang, J. H. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trap** for lithium-sulfur batteries. J. Mater. Sci. Technol. 2022, 98, 136–142.

    CAS  Google Scholar 

  112. Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; **e, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

    CAS  Google Scholar 

  113. **e, D. J.; Mei, S. L.; Xu, Y. L.; Quan, T.; Härk, E.; Kochovski, Z.; Lu, Y. Efficient sulfur host based on yolk–shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries. ChemSusChem 2021, 14, 1404–1413.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zeng, Z. P.; Li, W.; Chen, X. J.; Zhang, N.; Qi, H.; Liu, X. B. Nanosized FeS2 particles caged in the hollow carbon shell as a robust polysulfide adsorbent and redox mediator. ACS Sustainable Chem. Eng. 2020, 8, 3261–3272.

    CAS  Google Scholar 

  115. Cao, B. K.; Huang, J. T.; Zhao, F. Y.; Mo, Y.; Chen, Y.; Fang, H. T. Surface chemistry of tube-in-tube nanostructured cuprous sulfide@void@carbon in catalytical polysulfide conversion. J. Mater. Chem. A 2019, 7, 12815–12824.

    CAS  Google Scholar 

  116. **g, W. T.; Zu, J. H.; Zou, K. Y.; Dai, X.; Song, Y. Y.; Sun, J. J.; Chen, Y. Z.; Tan, Q.; Liu, Y. M. Tin disulfide embedded on porous carbon spheres for accelerating polysulfide conversion kinetics toward lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 635, 32–43.

    ADS  CAS  PubMed  Google Scholar 

  117. Yan, X. J.; Guo, W. Q.; Li, W. D.; Li, G. L.; Yue, Z. J.; Liu, J.; Peng, H. R.; Yin, Z. M.; Zhang, Z. H.; Mao, C. M. et al. Coupling highly dispersed Sb2S3 nanodots with nitrogen/sulfur dual-doped porous carbon nanosheets for efficient immobilization and catalysis of polysulfides conversion. Chem. Eng. J. 2021, 420, 127688.

    CAS  Google Scholar 

  118. Li, F. Y.; Wu, Y. J.; Lin, Y. X.; Li, J. H.; Sun, Y. J.; Nan, H. X.; Wu, M.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 626, 535–543.

    ADS  CAS  PubMed  Google Scholar 

  119. Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.

    Google Scholar 

  120. Zhang, X. M.; Wei, Y. H.; Wang, B. Y.; Wang, M.; Wang, Q.; Wu, H. Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium-sulfur batteries. Nano-Micro Lett. 2019, 11, 78.

    ADS  CAS  Google Scholar 

  121. Ai, G.; Hu, Q. Q.; Zhang, L.; Dai, K. H.; Wang, J.; Xu, Z. J.; Huang, Y.; Zhang, B.; Li, D. J.; Zhang, T. et al. Investigation of the nanocrystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 33987–33999.

    CAS  PubMed  Google Scholar 

  122. **, Z. S.; Zhao, M.; Lin, T. N.; Liu, B. Q.; Zhang, Q.; Zhang, L. Y.; Chen, L. H.; Li, L.; Su, Z. M.; Wang, C. G. Rational design of well-dispersed ultrafine CoS2 nanocrystals in micro-mesoporous carbon spheres with a synergistic effect for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 10885–10890.

    CAS  Google Scholar 

  123. Zhang, N.; Yang, Y.; Feng, X. R.; Yu, S. H.; Seok, J.; Muller, D. A.; Abruña, H. D. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li−S batteries. J. Mater. Chem. A 2019, 7, 21128–21139.

    CAS  Google Scholar 

  124. Sun, W. W.; Liu, S. K.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hong, X. B.; **e, K.; Ma, Z. Y.; Zheng, C. M.; **ong, S. Z. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205471.

    CAS  Google Scholar 

  125. Yuan, Q.; Chen, Y. X.; Li, A.; Li, Y. X.; Chen, X. H.; Jia, M. Q.; Song, H. H. Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery. Appl. Surf. Sci. 2020, 508, 145286.

    CAS  Google Scholar 

  126. Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. G.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

    Google Scholar 

  127. Wu, Q. P.; Yao, Z. G.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Built-in catalysis in confined nanoreactors for high-loading Li−S batteries. ACS Nano 2020, 14, 3365–3377.

    CAS  PubMed  Google Scholar 

  128. Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Wu, Z. Y.; Zeng, P.; Huang, C.; Wang, Y. MoS2-coated n-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustainable Chem. Eng. 2018, 6, 16828–16837.

    CAS  Google Scholar 

  129. Ren, J.; Zhou, Y. B.; **a, L.; Zheng, Q. J.; Liao, J.; Long, E. Y.; **e, F. Y.; Xu, C. G.; Lin, D. M. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nanoarchitecture hybrid for high performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 13835–13847.

    CAS  Google Scholar 

  130. Zhang, Y. L.; Lin, Y. X.; He, L. F.; Murugesan, V.; Pawar, G.; Sivakumar, B. M.; Ding, H. P.; Ding, D.; Liaw, B.; Dufek, E. J. et al. Dual functional Ni3S2@Ni core-shell nanoparticles decorating nanoporous carbon as cathode scaffolds for lithium-sulfur battery with lean electrolytes. ACS Appl. Energy Mater. 2020, 3, 4173–4179.

    CAS  Google Scholar 

  131. Li, W. D.; Gong, Z. J.; Yan, X. J.; Wang, D. Z.; Liu, J.; Guo, X. S.; Zhang, Z. H.; Li, G. C. In situ engineered ZnS−FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 433–442.

    CAS  Google Scholar 

  132. Ulissi, U.; Ito, S.; Hosseini, S. M.; Varzi, A.; Aihara, Y.; Passerini, S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv. Energy Mater. 2018, 8, 1801462.

    Google Scholar 

  133. Liang, Y. Z.; Ma, C.; Wang, Y. Q.; Yu, H. L.; Shen, X. Q.; Yao, S. S.; Li, T. B.; Qin, S. B. Cubic pyrite nickel sulfide nanospheres decorated with Ketjen black@sulfur composite for promoting polysulfides redox kinetics in lithium-sulfur batteries. J. Alloys Compd. 2022, 907, 164396.

    CAS  Google Scholar 

  134. Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82.

    ADS  CAS  Google Scholar 

  135. **, X. Z.; Gao, S.; Wu, A. M.; Zhao, J. J.; Huang, H.; Cao, G. Z. Dual-constrained sulfur in FeS2@C nanostructured lithium-sulfide batteries. ACS Appl. Energy Mater. 2020, 3, 10950–10960.

    CAS  Google Scholar 

  136. Li, R. R.; Shen, H. J.; Pervaiz, E.; Yang, M. H. Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium-sulfur batteries. Chem. Eng. J. 2021, 404, 126462.

    CAS  Google Scholar 

  137. Han, P.; Chung, S. H.; Manthiram, A. Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 23122–23130.

    CAS  PubMed  Google Scholar 

  138. Moorthy, B.; Kwon, S.; Kim, J. H.; Ragupathy, P.; Lee, H. M.; Kim, D. K. Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li−S batteries. Nanoscale Horiz. 2019, 4, 214–222.

    ADS  CAS  PubMed  Google Scholar 

  139. Liu, J. B.; Qiao, Z. S.; **e, Q. S.; Peng, D. L.; **e, R. J. Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li−S batteries. ACS Appl. Mater. Interfaces 2021, 13, 15226–15236.

    CAS  PubMed  Google Scholar 

  140. Dong, C. X.; Zhou, C.; Li, Y.; Yu, Y. K.; Zhao, T. H.; Zhang, G.; Chen, X. H.; Yan, K. J.; Mai, L. Q.; Xu, X. Ni single atoms on MoS2 nanosheets enabling enhanced kinetics of Li−S batteries. Small 2023, 19, 2205855.

    CAS  Google Scholar 

  141. Huang, S. Z.; Wang, Y.; Hu, J. P.; von Lim, Y.; Kong, D. Z.; Guo, L.; Kou, Z. K.; Chen, Y. X.; Yang, H. Y. In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. NPG Asia Mater. 2019, 11, 55

    ADS  Google Scholar 

  142. Wang, J. Y.; Zhou, L.; Guo, D. Y.; Wang, X. Y.; Fang, G. Y.; Chen, X. A.; Wang, S. Flower-like NiS2/WS2 heterojunction as polysulfide/sulfide bidirectional catalytic layer for high-performance lithium-sulfur batteries. Small 2023, 19, 2206926.

    CAS  Google Scholar 

  143. Jiang, Y. T.; Liang, P.; Tang, M. J.; Sun, S. P.; Min, H. H.; Han, J. C.; Shen, X. D.; Yang, H.; Chao, D. L.; Wang, J. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li−S batteries. J. Mater. Chem. A 2022, 10, 22080–22092.

    CAS  Google Scholar 

  144. Zhou, C.; Li, M.; Hu, N. T.; Yang, J. H.; Li, H.; Yan, J. W.; Lei, P. Y.; Zhuang, Y. P.; Guo, S. W. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li−S batteries. Adv. Funct. Mater. 2022, 22, 2204635.

    Google Scholar 

  145. Wei, N.; Cai, J. S.; Wang, R. C.; Wang, M. L.; Lv, W.; Ci, H. N.; Sun, J. Y.; Liu, Z. F. Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium-sulfur batteries. Nano Energy 2019, 66, 104190.

    CAS  Google Scholar 

  146. Zhang, J. Y.; Xu, G. B.; Zhang, Q.; Li, X.; Yang, Y.; Yang, L. W.; Huang, J. Y.; Zhou, G. M. Mo-O-C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium-sulfur batteries. Adv. Sci. 2022, 9, 2201579.

    CAS  Google Scholar 

  147. Tan, L.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wang, J. X. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 3707–3713.

    CAS  PubMed  Google Scholar 

  148. Guo, J.; Jiang, H. L.; Li, X. C.; Chu, Z.; Zheng, W. J.; Dai, Y.; Jiang, X. B.; Wu, X. M.; He, G. H. Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 358–367.

    Google Scholar 

  149. Al-Tahan, M. A.; Dong, Y. T.; Shrshr, A. E.; Liu, X. B.; Zhang, R.; Guan, H.; Kang, X. Y.; Wei, R. P.; Zhang, J. M. Enormous-sulfur-content cathode and excellent electrochemical performance of Li−S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 2022, 609, 235–248.

    ADS  CAS  PubMed  Google Scholar 

  150. Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward high-performance Li−S batteries. J. Mater. Chem. A 2018, 6, 11694–11699.

    CAS  Google Scholar 

  151. Zhang, W. Y.; Hong, D. H.; Su, Z.; Yi, S.; Tian, L. Y.; Niu, B.; Zhang, Y. Y.; Long, D. H. Tailored ZnO−ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li−S batteries. Energy Storage Mater. 2022, 53, 404–414.

    Google Scholar 

  152. Yao, S. S.; Cui, J.; Huang, J. Q.; Lu, Z. H.; Deng, Y.; Chong, W. G.; Wu, J. X.; Ul Haq, M. I.; Ciucci, F.; Kim, J. K. Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. Adv. Energy Mater. 2018, 8, 1800710.

    Google Scholar 

  153. Geng, M. Z.; Yang, H. Q.; Shang, C. Q. The multi-functional effects of CuS as modifier to fabricate efficient interlayer for Li−S batteries. Adv. Sci. 2022, 9, 2204561.

    CAS  Google Scholar 

  154. Li, F.; Qian, X. Y.; **, L. N. MOF-derived MnS/N-C@CNT composites as separator coating materials for long-cycling Li−S batteries. ACS Sustainable Chem. Eng. 2021, 9, 15469–15477.

    CAS  Google Scholar 

  155. Wang, J. L.; Cai, W.; Mu, X. W.; Han, L. F.; Wu, N.; Liao, C.; Kan, Y. C.; Hu, Y. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4865–4877.

    ADS  CAS  Google Scholar 

  156. Zhen, M. M.; Zuo, X. T.; Wang, J.; Wang, C. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries. Nano Res. 2019, 12, 1017–1024.

    CAS  Google Scholar 

  157. Gong, Y. Y.; Wang, Y. N.; Fang, Z. M.; Zhao, S. S.; He, Y. S.; Zhang, W. M.; Mu, J. L.; Zhang, L. P.; Ma, Z. F. Constructing a catalytic reservoir using cobalt nanoparticles-MoS2@nitrogen doped carbon nanotubes on the separator to immobilize polysulfides and accelerate their conversion for lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 136943.

    CAS  Google Scholar 

  158. Cheng, P.; Shi, L. L.; Li, W. Q.; Fang, X. R.; Cao, D. L.; Zhao, Y. G.; Cao, P.; Liu, D. Q.; He, D. Y. Efficient regulation of polysulfides by MoS2/MoO3 heterostructures for high-performance Li−S batteries. Small 2023, 19, 2206083.

    CAS  Google Scholar 

  159. Zhang, Y. Z.; Xu, G. X.; Kang, Q.; Zhan, L.; Tang, W. Q.; Yu, Y. X.; Shen, K. L.; Wang, H. C.; Chu, X.; Wang, J. Y. et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 16812–16820.

    CAS  Google Scholar 

  160. Yang, J. Y.; Yu, L. H.; Zheng, B. B.; Li, N. R.; **, J. Y.; Qiu, X. P. Carbon microtube textile with MoS2 nanosheets grown on both outer and inner walls as multifunctional interlayer for lithium-sulfur batteries. Adv. Sci. 2020, 7, 1903260.

    CAS  Google Scholar 

  161. Yang, Y. B.; Wang, S. X.; Zhang, L. T.; Deng, Y. F.; Xu, H.; Qin, Q. S.; Chen, G. H. CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li−S batteries. Chem. Eng. J. 2019, 369, 77–86.

    CAS  Google Scholar 

  162. Xu, J.; Yang, L. K.; Cao, S. F.; Wang, J. W.; Ma, Y. M.; Zhang, J. J.; Lu, X. Q. Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 2021, 8, 2101019.

    CAS  Google Scholar 

  163. Huang, Y. G.; Lv, D. J.; Zhang, Z. J.; Ding, Y. J.; Lai, F. Y.; Wu, Q.; Wang, H. Q.; Li, Q. Y.; Cai, Y. Z.; Ma, Z. L. Co−Fe bimetallic sulfide with robust chemical adsorption and catalytic activity for polysulfides in lithium-sulfur batteries. Chem. Eng. J. 2020, 387, 124122.

    CAS  Google Scholar 

  164. Li, Z.; Zhang, F.; Cao, T.; Tang, L. B.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator. Adv. Funct. Mater. 2020, 30, 2006297.

    CAS  Google Scholar 

  165. Liu, Z. H.; Mao, X. Q.; Wang, S.; Li, T. T.; Luo, Y. Q.; **-catalyzing capability for robust Li−S batteries. Chem. Eng. J. 2022, 447, 137433.

    Google Scholar 

  166. Zuo, X. T.; Zhen, M. M.; Liu, D. P.; Yu, H. H.; Feng, X. L.; Zhou, W.; Wang, H.; Zhang, Y. A multifunctional catalytic interlayer for propelling solid-solid conversion kinetics of Li2S2 to Li2S in lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2214206.

    CAS  Google Scholar 

  167. Wang, J. F.; Li, J. C@MoS2 modified separator as efficient trapper and catalysis for promoting polysulfide conversion in Li−S battery. J. Colloid Interface Sci. 2022, 616, 298–303.

    ADS  CAS  PubMed  Google Scholar 

  168. Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Shi, X. S.; Qiao, S. M.; Wang, Q.; Zhang, Q.; Hao, C.; Xu, H. et al. Competing reduction induced homogeneous oxygen do** to unlock MoS2 basal planes for faster polysulfides conversion. J. Energy Chem. 2022, 73, 26–34.

    CAS  Google Scholar 

  169. Zhen, M. M.; Guo, S. Q.; Shen, B. X. Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 13318–13327.

    CAS  Google Scholar 

  170. Wu, J. Y.; Li, X. W.; Zeng, H. X.; Xue, Y.; Chen, F. Y.; Xue, Z. G.; Ye, Y. S.; **e, X. L. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 7897–7906.

    CAS  Google Scholar 

  171. **an, C. X.; **g, P.; Pu, X. H.; Wang, G. C.; Wang, Q.; Wu, H.; Zhang, Y. A trifunctional separator based on a blockage-adsorption-catalysis synergistic effect for Li−S batteries. ACS Appl. Mater. Interfaces 2020, 12, 47599–47611.

    CAS  PubMed  Google Scholar 

  172. Li, Z.; Zhang, F.; Tang, L. B.; Tao, Y. Y.; Chen, H.; Pu, X. M.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; **a, Y. Y. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 2020, 390, 124653.

    CAS  Google Scholar 

  173. Wang, X. X.; Deng, N. P.; Ju, J. G.; Wang, G.; Wei, L. Y.; Gao, H. J.; Cheng, B. W.; Kang, W. M. Flower-like heterostructured MoP−MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li−S batteries. J. Memb. Sci. 2022, 642, 120003.

    CAS  Google Scholar 

  174. Zhang, J. Z.; Zhang, J.; Liu, K. L.; Yang, T.; Tian, J. H.; Wang, C. Y.; Chen, M. M.; Wang, X. L. Abundant defects-induced interfaces enabling effective anchoring for polysulfides and enhanced kinetics in lean electrolyte lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 46767–46775.

    CAS  PubMed  Google Scholar 

  175. Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; **ao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity Mediator toward High-Rate and Long-Life Lithium-Sulfur Batteries. ACS Nano 2021, 15, 7114–7130.

    CAS  PubMed  Google Scholar 

  176. Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021, 15, 20478–20488.

    CAS  PubMed  Google Scholar 

  177. Xu, Z.; Wang, Z.; Wang, M. R.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Li, J. Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trap**-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chem. Eng. J. 2021, 422, 130049.

    CAS  Google Scholar 

  178. **, L. N.; Chen, J. Y.; Fu, Z. H.; Qian, X. Y.; Cheng, J.; Hao, Q. Y.; Zhang, K. ZIF-8/ZIF-67 derived ZnS@Co−N−C hollow core-shell composite and its application in lithium-sulfur battery. Sustainable Mater. Technol. 2023, 35, e00571.

    CAS  Google Scholar 

  179. Ali, S.; Waqas, M.; **g, X. P.; Chen, N.; Chen, D. J.; **ong, J.; He, W. D. Carbon-tungsten disulfide composite bilayer separator for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 39417–39421.

    CAS  PubMed  Google Scholar 

  180. Liu, X. Y.; Wang, S. X.; Duan, H. H.; Deng, Y. F.; Chen, G. H. A thin and multifunctional CoS@g-C3N4/Ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 608, 470–481.

    ADS  CAS  PubMed  Google Scholar 

  181. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    ADS  CAS  Google Scholar 

  182. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  183. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    CAS  PubMed  Google Scholar 

  184. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    CAS  Google Scholar 

  186. Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

    ADS  CAS  Google Scholar 

  187. Sun, C.; Wang, L. L.; Zhao, W. W.; **e, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

    CAS  Google Scholar 

  188. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  189. Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

    ADS  CAS  Google Scholar 

  190. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trap** of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    CAS  PubMed  Google Scholar 

  191. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    ADS  CAS  PubMed  Google Scholar 

  192. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the open research fund of the State Key Laboratory of Organic Electronics and Information Displays, the Startup Foundation for Introducing Talent of NUIST (Nos. 2021r090 and 2021r091), and Jiangsu Provincial Scientific Research and Practice Innovation Program (Nos. SJCX23_0420 and SJCX23_0421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyin Zhu, Yizhou Zhang or Lianbo Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Wu, Q., Zhang, X. et al. Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries. Nano Res. 17, 2574–2591 (2024). https://doi.org/10.1007/s12274-023-6227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6227-4

Keywords

Navigation