Log in

Mechanically driven assembly of biomimetic 2D-material microtextures with bioinspired multifunctionality

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nature provides a wealth of bio-inspiration for advanced material research. Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and facilitated technological advances in various applications. In recent years, two-dimensional materials (2DMs) have emerged as important building block units in the biomimicry field due to their distinct chemical, physical, electrical, electrochemical, and catalytic properties. In this review article, various mechanically driven assembly approaches are summarized to fabricate various genealogies of biomimetic 2DM microtextures with bio-inspired multifunctionality. First, sequential deformation strategies are discussed to programmably construct higher dimensional 2DM microtextures, ranging from wrinkles/crumples (one-time deformation) to multiscale hierarchies (multiple deformations). Next, the current progress using higher dimensional 2DM microtextures to imitate different biological structures and/or induce bio-inspired multifunctionality is systematically summarized. Four showcases of bio-inspiration and biomimicry using different 2DM nanosheets are highlighted: (1) wrinkle patterns of an earthworm that spur the design of strain sensors with programmable working ranges and sensitivities, (2) wrinkle appearance of a Shar-Pei dog that motivates the fabrication of stretchable energy storage devices, (3) hierarchical scale textures of a desert lizard that inspire cation-induced gelation platforms for 2DM aerogels, and (4) wrinkle skin of an elephant that influences the development of 2DM protective skin for soft robots. Finally, challenges and future opportunities of adopting 2DM nanosheets to assemble biomimetic microstructures with synergistic functionalities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, L. P.; Peng, J. T.; Liu, Y. B.; Wen, Y. Q.; Zhang, X. J.; Jiang, L.; Wang, S. T. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. ACS Nano 2013, 7, 5077–5083.

    Article  CAS  PubMed  Google Scholar 

  2. Yao, H. B.; Ge, J.; Mao, L. B.; Yan, Y. X.; Yu, S. H. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications. Adv. Mater. 2014, 26, 163–188.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J. F.; Cheng, Q. F.; Tang, Z. Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 2012, 41, 1111–1129.

    Article  PubMed  Google Scholar 

  4. Collins, C. M.; Safiuddin, M. Lotus-leaf-inspired biomimetic coatings: Different types, key properties, and applications in infrastructures. Infrastructures 2022, 7, 46.

    Article  Google Scholar 

  5. Lin, J. Y.; Cai, Y.; Wang, X. F.; Ding, B.; Yu, J. Y.; Wang, M. R. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 2011, 3, 1258–1262.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yoo, D.; Kim, S. J.; Joung, Y.; Jang, S.; Choi, D.; Kim, D. S. Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output. Nano Energy 2022, 99, 107361.

    Article  CAS  Google Scholar 

  7. Lee, J.; Jung, Y.; Lee, M. J.; Hwang, J. S.; Guo, J.; Shin, W.; Min, J. K.; Pyun, K. R.; Lee, H.; Lee, Y. et al. Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 2022, 7, 1054–1064.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Tada, H.; Mann, S. E.; Miaoulis, I. N.; Wong, P. Y. Effects of a butterfly scale microstructure on the iridescent color observed at different angles. Opt. Express 1999, 5, 87–92.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Fu, Q.; Beall, G. H.; Smith, C. M. Nature-inspired design of strong, tough glass-ceramics. MRS Bull. 2017, 42, 220–225.

    Article  ADS  CAS  Google Scholar 

  10. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhang, Q.; Wang, Y. F.; Lv, Y. W.; Yu, S. X.; Ma, R. J. Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. USA 2022, 119, e2207353119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McConney, M. E.; Anderson, K. D.; Brott, L. L.; Naik, R. R.; Tsukruk, V. V. Bioinspired material approaches to sensing. Adv. Funct. Mater. 2009, 19, 2527–2544.

    Article  CAS  Google Scholar 

  14. Chang, T. H.; Tian, Y.; Li, C. S.; Gu, X. Y.; Li, K. R.; Yang, H. T.; Sanghani, P.; Lim, C. M.; Ren, H. L.; Chen, P. Y. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 2019, 11, 10226–10236.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y.; Gomez-Mingot, M.; Fogeron, T.; Fontecave, M. Carbon dioxide reduction: A bioinspired catalysis approach. Acc. Chem. Res. 2021, 54, 4250–4261.

    Article  CAS  PubMed  Google Scholar 

  16. Bertaglia, T.; Faria, L. C. I.; dos Santos Clarindo, J. E.; Crespilho, F. N. Bioinspired batteries: Using nature-inspired materials in greener and safer energy storage technologies. In Advances in Bioelectrochemistry Volume 4: Biodevice, Bioelectrosynthesis and Bioenergy. Crespilho, F. N., Ed.; Springer: Cham, 2022; pp 63–87.

    Chapter  Google Scholar 

  17. Mei, J.; Liao, T.; Peng, H.; Sun, Z. Q. Bioinspired materials for energy storage. Small Methods 2022, 6, 2101076.

    Article  CAS  Google Scholar 

  18. Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

    Article  ADS  CAS  Google Scholar 

  19. Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater Sci. 2015, 73, 44–126.

    Article  CAS  Google Scholar 

  20. Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77.

    Article  Google Scholar 

  21. Hao, J. L.; Wang, W. J.; Zhao, J. W.; Che, H. L.; Chen, L.; Sui, X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2291–2300.

    Article  CAS  Google Scholar 

  22. Bagheri, S.; Chilcott, R.; Luo, S. Y.; Sinitskii, A. Bifunctional amine- and thiol-modified Ti3C2Tx MXene for trace detection of heavy metals. Langmuir 2022, 38, 12924–12934.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, K. Y.; Li, K. R.; Chang, T. H.; **e, J. P.; Chen, P. Y. Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv. Funct. Mater. 2019, 29, 1904603.

    Article  CAS  Google Scholar 

  24. Zheng, K. Y.; Li, S.; **g, L.; Chen, P. Y.; **e, J. P. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv. Healthcare Mater. 2020, 9, 2001007.

    Article  CAS  Google Scholar 

  25. Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012, 6, 7867–7878.

    Article  CAS  PubMed  Google Scholar 

  26. Goh, K.; Karahan, H. E.; Wei, L.; Bae, T. H.; Fane, A. G.; Wang, R.; Chen, Y. Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon 2016, 109, 694–710.

    Article  CAS  Google Scholar 

  27. Konkena, B.; Vasudevan, S. Glass, gel, and liquid crystals: Arrested states of graphene oxide aqueous dispersions. J. Phys. Chem. C 2014, 118, 21706–21713.

    Article  CAS  Google Scholar 

  28. Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

    Article  CAS  PubMed  Google Scholar 

  29. Bai, H.; Li, C.; Wang, X. L.; Shi, G. Q. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 2010, 46, 2376–2378.

    Article  CAS  Google Scholar 

  30. Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

    Article  CAS  Google Scholar 

  31. Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. W. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J. Power Sources 2010, 195, 3031–3035.

    Article  ADS  CAS  Google Scholar 

  32. Huang, S. Y.; Wu, G. P.; Chen, C. M.; Yang, Y.; Zhang, S. C.; Lu, C. X. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon 2013, 52, 613–616.

    Article  CAS  Google Scholar 

  33. Wu, Z. S.; Pei, S. F.; Ren, W. C.; Tang, D. M.; Gao, L. B.; Liu, B. L.; Li, F.; Liu, C.; Cheng, H. M. Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 2009, 21, 1756–1760.

    Article  CAS  Google Scholar 

  34. Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

    Article  CAS  Google Scholar 

  35. Liu, K.; Wu, J. Q. Mechanical properties of two-dimensional materials and heterostructures. J. Mater. Res. 2016, 31, 832–844.

    Article  ADS  CAS  Google Scholar 

  36. Lu, X. Cellulose nanocrystals for wrinkled fabric. BioResources 2019, 14, 7632–7635.

    Article  CAS  Google Scholar 

  37. Zang, J. F.; Cao, C. Y.; Feng, Y. Y.; Liu, J.; Zhao, X. H. Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 2014, 4, 6492.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; **g, Y. H.; Park, I.; van der Zande, A. M. et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 2020, 11, 1543.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan, Y. L.; Chu, Z. Y.; Jiang, Z. H.; Hu, T. J.; Li, G. Y.; Song, J. Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 2017, 11, 6843–6852.

    Article  CAS  PubMed  Google Scholar 

  40. Choi, J.; Kim, H. J.; Wang, M. C.; Leem, J.; King, W. P.; Nam, S. W. Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 2015, 15, 4525–4531.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Chen, P. Y.; Sodhi, J.; Qiu, Y.; Valentin, T. M.; Steinberg, R. S.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 2016, 28, 3564–3571.

    Article  CAS  PubMed  Google Scholar 

  42. Chueh, W. C.; Hao, Y.; Jung, W. C.; Haile, S. M. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat. Mater. 2012, 11, 155–161.

    Article  ADS  CAS  Google Scholar 

  43. Yang, H. T.; **ao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; **g, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, P. Y.; Zhang, M. K.; Liu, M. C.; Wong, I. Y.; Hurt, R. H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 2018, 12, 234–244.

    Article  CAS  PubMed  Google Scholar 

  45. **g, L.; Hsiao, L. Y.; Li, S.; Yang, H. T.; Ng, P. L. P.; Ding, M.; Van Truong, T.; Gao, S. P.; Li, K. R.; Guo, Y. X. et al. 2D-material-integrated hydrogels as multifunctional protective skins for soft robots. Mater. Horiz. 2021, 8, 2065–2078.

    Article  CAS  PubMed  Google Scholar 

  46. Chang, T. H.; Zhang, T. R.; Yang, H. T.; Li, K. R.; Tian, Y.; Lee, J. Y.; Chen, P. Y. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018, 12, 8048–8059.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, Y.; Hu, X. C.; Fan, Q. Z.; Wen, H. R. Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 2016, 4, 4587–4591.

    Article  CAS  Google Scholar 

  48. Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.

    Article  CAS  PubMed  Google Scholar 

  49. Jung, W. B.; Cho, K. M.; Lee, W. K.; Odom, T. W.; Jung, H. T. Universal method for creating hierarchical wrinkles on thin-film surfaces. ACS Appl. Mater. Interfaces 2018, 10, 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Z. Y.; Hong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 2005, 53, 2101–2118.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  51. Lin, H.; Li, Y. F.; Zhu, J. H. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J. Membr. Sci. 2020, 598, 117789.

    Article  CAS  Google Scholar 

  52. Hu, X. Y.; Dou, Y. Y.; Li, J. J.; Liu, Z. F. Buckled structures: Fabrication and applications in wearable electronics. Small 2019, 15, 1804805.

    Article  Google Scholar 

  53. Li, S. P.; Han, M. D.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G.; Wang, H. L. Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. J. Mech. Phys. Solids 2019, 125, 736–748.

    Article  ADS  Google Scholar 

  54. Zhang, Q. T.; Yin, J. Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mech. Phys. Solids 2018, 118, 40–57.

    Article  ADS  MathSciNet  Google Scholar 

  55. Nolte, A. J.; Chung, J. Y.; Davis, C. S.; Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter 2017, 13, 7930–7937.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, D. I.; Ahn, H. S.; Choi, D. H. Effect of surface hydrophilicity and water vapor pressure on the interfacial shear strength of adsorbed water layer. Appl. Phys. Lett. 2004, 84, 1919–1921.

    Article  ADS  CAS  Google Scholar 

  57. Schumacher, A.; Kruse, N.; Prins, R.; Meyer, E.; Lüthi, R.; Howald, L.; Güntherodt, H. J.; Scandella, L. Influence of humidity on friction measurements of supported MoS2 single layers. J. Vac. Sci. Technol. B 1996, 14, 1264–1267.

    Article  CAS  Google Scholar 

  58. **g, L.; **e, Q.; Li, H. L.; Li, K. R.; Yang, H. T.; Ng, P. L. P.; Li, S.; Li, Y.; Teo, E. H. T.; Wang, X. N. et al. Multigenerational crumpling of 2D materials for anticounterfeiting patterns with deep learning authentication. Matter 2020, 3, 2160–2180.

    Article  Google Scholar 

  59. Brun, J. J.; De Danieli, S. Earthworms: Our partners for Resilient, Living Soil in the Mountains [Online]. Interreg Alpine Space Booklet. https://www.readkong.com/page/earthworms-our-partners-for-resilient-living-soil-in-the-1709162 (accessed Jun 26, 2023).

  60. Hodgson, L. Earthworms Are Bad News for North American Forests [Online]. Laidback Gardener. https://laidbackgardener.blog/2021/01/04/earthworms-are-bad-news-for-north-american-forests/ (accessed Jun 26, 2023).

  61. Hu, Y.; Wei, B. R.; Yang, D. P.; Ma, D. K.; Huang, S. M. Chameleon-inspired brilliant and sensitive mechano-chromic photonic skins for self-reporting the strains of earthworms. ACS Appl. Mater. Interfaces 2022, 14, 11672–11680.

    Article  CAS  PubMed  Google Scholar 

  62. Calderón, A. A.; Ugalde, J. C.; Chang, L. L.; Zagal, J. C.; Pérez-Arancibia, N. O. An earthworm-inspired soft robot with perceptive artificial skin. Bioinspir. Biomim. 2019, 14, 056012.

    Article  ADS  PubMed  Google Scholar 

  63. Karipoth, P.; Christou, A.; Pullanchiyodan, A.; Dahiya, R. Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing. Adv. Intell. Syst. 2022, 4, 2100092.

    Article  Google Scholar 

  64. Qiu, A. D.; Li, P. L.; Yang, Z. K.; Yao, Y.; Lee, I.; Ma, J. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 2019, 29, 1806306.

    Article  Google Scholar 

  65. Yang, R. L.; Song, H. Z.; Zhou, Z.; Yang, S. D.; Tang, X.; He, J. K.; Liu, S. Y.; Zeng, Z. P.; Yang, B. R.; Gui, X. C. Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 2023, 15, 8345–8354.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, H. T.; Li, J. L.; **ao, X.; Wang, J. H.; Li, Y. F.; Li, K. R.; Li, Z. P.; Yang, H. C.; Wang, Q.; Yang, J. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 2022, 13, 5311.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, M. C.; Chun, S. G.; Han, R. S.; Ashraf, A.; Kang, P.; Nam, S. W. Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 2015, 15, 1829–1835.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. CFhu, Z. M.; Jiao, W. C.; Huang, Y. F.; Zheng, Y. T.; Wang, R. G.; He, X. D. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 2021, 9, 9634–9643.

    Article  Google Scholar 

  69. Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Y. H.; Maleski, K.; Anasori, B.; Thostenson, J. O.; Pang, Y. K.; Feng, Y. Y.; Zeng, K. X.; Parker, C. B.; Zauscher, S.; Gogotsi, Y. et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586.

    Article  CAS  PubMed  Google Scholar 

  71. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 2018, 1, 30–39.

    Article  CAS  Google Scholar 

  72. Guo, H. S.; Priimagi, A.; Zeng, H. Optically controlled latching and launching in soft actuators. Adv. Funct. Mater. 2022, 32, 2108919.

    Article  CAS  Google Scholar 

  73. Gong, X. F.; Yang, Q.; Zhi, C. Y.; Lee, P. S. Stretchable energy storage devices: From materials and structural design to device assembly. Adv. Energy Mater. 2021, 11, 2003308.

    Article  CAS  Google Scholar 

  74. Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

    Article  Google Scholar 

  75. Song, W. J.; Yoo, S.; Song, G.; Lee, S.; Kong, M.; Rim, J.; Jeong, U.; Park, S. Recent progress in stretchable batteries for wearable electronics. Batteries Supercaps 2019, 2, 181–199.

    Article  Google Scholar 

  76. Weng, W.; Sun, Q.; Zhang, Y.; He, S. S.; Wu, Q. Q.; Deng, J.; Fang, X.; Guan, G. Z.; Ren, J.; Peng, H. S. A gum-like lithium-ion battery based on a novel arched structure. Adv. Mater. 2015, 27, 1363–1369.

    Article  CAS  PubMed  Google Scholar 

  77. Liu, W.; Chen, J.; Chen, Z.; Liu, K.; Zhou, G. M.; Sun, Y. M.; Song, M. S.; Bao, Z. N.; Cui, Y. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator. Adv. Energy Mater. 2017, 7, 1701076.

    Article  Google Scholar 

  78. Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  79. Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Superstretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.

    Article  Google Scholar 

  80. Li, Y.; Yang, H. T.; Zhang, T. R.; Li, S.; Li, S.; He, S. M.; Chen, T. L.; Lee, J. Y.; Zhao, Y. S.; Chen, P. Y. Stretchable Zn-ion hybrid battery with reconfigurable V2CTx and Ti3C2Tx MXene electrodes as a magnetically actuated soft robot. Adv. Energy Mater. 2021, 11, 2101862.

    Article  CAS  Google Scholar 

  81. Li, S.; Chang, T. H.; Li, Y.; Ding, M.; Yang, J.; Chen, P. Y. Stretchable Ti3C2Tx MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 2021, 9, 4664–4672.

    Article  CAS  Google Scholar 

  82. Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The texas horned lizard as a model for a biomimetic “liquid diode”. J. R. Soc. Interface 2015, 12, 20150415.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

    Article  CAS  Google Scholar 

  85. Yang, W. S.; Pan, M. F.; Huang, C.; Zhao, Z. Q.; Wang, J. M.; Zeng, H. B. Graphene oxide-based noble-metal nanoparticles composites for environmental application. Compos. Commun. 2021, 24, 100645.

    Article  Google Scholar 

  86. Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding, M.; Li, S.; Guo, L.; **g, L.; Gao, S. P.; Yang, H. T.; Little, J. M.; Dissanayake, T. U.; Li, K. R.; Yang, J. et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv. Energy Mater. 2021, 11, 2101494.

    Article  CAS  Google Scholar 

  88. Little, J. M.; Sun, J. Y.; Kamali, A.; Chen, A.; Leff, A. C.; Li, Y.; Borden, L. K.; Dissanayake, T. U.; Essumang, D.; Oseleononmen, B. O. et al. Noble metal ion-directed assembly of 2D materials for heterostructured catalysts and metallic micro-texturing. Adv. Funct. Mater. 2023, 33, 2215222.

    Article  CAS  Google Scholar 

  89. Lin, Z. H.; Liu, J.; Peng, W.; Zhu, Y. Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. W. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 2020, 14, 2109–2117.

    Article  CAS  PubMed  Google Scholar 

  90. Schulz, A. K.; Boyle, M.; Boyle, C.; Sordilla, S.; Rincon, C.; Hooper, S.; Aubuchon, C.; Reidenberg, J. S.; Higgins, C.; Hu, D. L. Skin wrinkles and folds enable asymmetric stretch in the elephant trunk. Proc. Natl. Acad. Sci. USA 2022, 119, e2122563119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Delmerico, J.; Mintchev, S.; Giusti, A.; Gromov, B.; Melo, K.; Horvat, T.; Cadena, C.; Hutter, M.; Ijspeert, A.; Floreano, D. et al. The current state and future outlook of rescue robotics. J. Field Robot. 2019, 36, 1171–1191.

    Article  Google Scholar 

  92. Yang, G. Z.; Bellingham, J.; Dupont, P. E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R. et al. The grand challenges of science robotics. Sci. Robot. 2018, 3, eaar7650.

    Article  PubMed  Google Scholar 

  93. Lösch, R.; Grehl, S.; Donner, M.; Buhl, C.; Jung, B. Design of an autonomous robot for map**, navigation, and manipulation in underground mines. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp 1407–1412.

  94. Wang, C. J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.; Li, Y. H.; Chen, W. Q.; Song, J. Z.; Verduzco, R.; Yu, C. J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695.

    Article  Google Scholar 

  95. Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3}, 84–100.

    Article  ADS  Google Scholar 

  96. Chen, Y. F.; Zhao, H. C.; Mao, J.; Chirarattananon, P.; Helbling, E. F.; Hyun, N. S. P.; Clarke, D. R.; Wood, R. J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Sinatra, N. R.; Teeple, C. B.; Vogt, D. M.; Parker, K. K.; Gruber, D. F.; Wood, R. J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425.

    Article  PubMed  Google Scholar 

  98. Abondance, S.; Teeple, C. B.; Wood, R. J. A dexterous soft robotic hand for delicate in-hand manipulation. IEEE Robot. Autom. Lett. 2020, 5, 5502–5509.

    Article  Google Scholar 

  99. Ding, M.; **g, L.; Yang, H.; Machnicki, C. E.; Fu, X.; Li, K.; Wong, I. Y.; Chen, P. Y. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Mater. Today Adv. 2020, 8, 100088.

    Article  Google Scholar 

  100. Rich, S. I.; Wood, R. J.; Majidi, C. Untethered soft robotics. Nat. Electron. 2018, 1, 102–112.

    Article  Google Scholar 

  101. Mishra, A. K.; Wallin, T. J.; Pan, W. Y.; Xu, A.; Wang, K. Y.; Giannelis, E. P.; Mazzolai, B.; Shepherd, R. F. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918.

    Article  PubMed  Google Scholar 

  102. **g, L.; Li, K. R.; Yang, H. T.; Chen, P. Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 2020, 7, 54–70.

    Article  CAS  Google Scholar 

  103. Chang, T. H.; Tian, Y.; Wee, D. L. Y.; Ren, H. L.; Chen, P. Y. Crumpling and unfolding of montmorillonite hybrid nanocoatings as stretchable flame-retardant skin. Small 2018, 14, 1800596.

    Article  Google Scholar 

  104. Li, Y.; Tian, X.; Gao, S. P.; **g, L.; Li, K. R.; Yang, H. T.; Fu, F. F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S. et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.

    Article  CAS  Google Scholar 

  105. Li, K. R.; Li, Z. P.; **ong, Z.; Wang, Y. X.; Yang, H. T.; Xu, W. X.; **g, L.; Ding, M.; Zhu, J.; Ho, J. S. et al. Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 2022, 32, 2110534.

    Article  CAS  Google Scholar 

  106. Luo, Y.; Shepard, G. D.; Ardelean, J. V.; Rhodes, D. A.; Kim, B.; Barmak, K.; Hone, J. C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142.

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Lee, J.; Yun, S. J.; Seo, C.; Cho, K.; Kim, T. S.; An, G. H.; Kang, K.; Lee, H. S.; Kim, J. Switchable, tunable, and directable exciton funneling in periodically wrinkled WS2. Nano Lett. 2021, 21, 43–50.

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Cho, C.; Wong, J.; Taqieddin, A.; Biswas, S.; Aluru, N. R.; Nam, S. W.; Atwater, H. A. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 2021, 21, 3956–3964.

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Wang, W. J.; Hao, J. L.; Sun, Q.; Zhao, M. Q.; Liu, H. Y.; Li, C.; Sui, X. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res. 2023, 16, 1205–1211.

    Article  ADS  CAS  Google Scholar 

  110. Cheng, R.; Wu, Y.; Wang, B.; Zeng, J. S.; Li, J. P.; Xu, J.; Gao, W. H.; Chen, K. F. Fireproof ultrastrong all-natural cellulose nanofiber/montmorillonite-supported MXene nanocomposites with electromagnetic interference shielding and thermal management multifunctional applications. J. Mater. Chem. A 2023, 11, 18323–18335.

    Article  CAS  Google Scholar 

  111. **ng, C. Y.; Tian, Y.; Yu, Z. J.; Li, Z. H.; Meng, B.; Peng, Z. C. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2022, 14, 36741–36752.

    Article  CAS  PubMed  Google Scholar 

  112. Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

    Article  CAS  PubMed  Google Scholar 

  113. Li, K. R.; Chang, T. H.; Li, Z. P.; Yang, H. T.; Fu, F. F.; Li, T. T.; Ho, J. S.; Chen, P. Y. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019, 9, 1901687.

    Article  Google Scholar 

  114. Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Zhang, H. Z.; Zheng, H. T.; Xu, C. A.; Shi, J.; Lu, M. G. Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A 2021, 143, 106290.

    Article  CAS  Google Scholar 

  115. Bian, F. K.; Sun, L. Y.; Cai, L. J.; Wang, Y.; Zhao, Y. J. Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. USA 2020, 117, 22736–22742.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chang, T. H.; Li, K. R.; Yang, H. T.; Chen, P. Y. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv. Mater. 2018, 30, 1802418.

    Article  Google Scholar 

  117. Chen, P. Y.; Liu, M. C.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. From flatland to spaceland: Higher dimensional patterning with two-dimensional materials. Adv. Mater. 2017, 29, 1605096.

    Article  Google Scholar 

  118. Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Start-Up Fund of University of Maryland, College Park (KFS No.: 2957431 to P.-Y. Chen). Fundings for this research were provided by Energy Innovation Seed Grant from Maryland Energy Innovation Institute (MEI^2) (KFS No.: 2957597 to P.-Y. Chen). This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-21-1-4065 (KFS No.: 5284212 to P.-Y. Chen). Y. L. acknowledges the financial support provided by the Maryland Robotics Center (MRC) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Yen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., **g, L., Little, J.M. et al. Mechanically driven assembly of biomimetic 2D-material microtextures with bioinspired multifunctionality. Nano Res. 17, 663–678 (2024). https://doi.org/10.1007/s12274-023-6220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6220-y

Keywords

Navigation