Log in

Temperature-driven reversible structural transformation and conductivity switching in ultrathin Cu9S5 crystals

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials with reversible phase transformation are appealing for their rich physics and potential applications in information storage. However, up to now, reversible phase transitions in 2D materials that can be driven by facile nondestructive methods, such as temperature, are still rare. Here, we introduce ultrathin Cu9S5 crystals grown by chemical vapor deposition (CVD) as an exemplary case. For the first time, their basic electrical properties were investigated based on Hall measurements, showing a record high hole carrier density of ∼ 1022 cm−3 among 2D semiconductors. Besides, an unusual and repeatable conductivity switching behavior at ∼ 250 K were readily observed in a wide thickness range of CVD-grown Cu9S5 (down to 2 unit-cells). Confirmed by in-situ selected area electron diffraction, this unusual behavior can be ascribed to the reversible structural phase transition between the room-temperature hexagonal β phase and low-temperature β′ phase with a superstructure. Our work provides new insights to understand the physical properties of ultrathin Cu9S5 crystals, and brings new blood to the 2D materials family with reversible phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cowley, R. A. Structural phase transitions I. Landau theory. Adv. Phys. 1980, 29, 1–110.

    CAS  Google Scholar 

  2. Zhao, P. L.; Guan, X. X.; Zheng, H.; Jia, S. F.; Li, L.; Liu, H. H.; Zhao, L. L.; Sheng, H. P.; Meng, W. W.; Zhuang, Y. L. et al. Surface- and strain-mediated reversible phase transformation in quantum-confined ZnO nanowires. Phys. Rev. Lett. 2019, 123, 216101.

    CAS  Google Scholar 

  3. Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.

    CAS  Google Scholar 

  4. Chen, C.; Shi, M. J.; Zhao, Y.; Yang, C.; Zhao, L. P.; Yan, C. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem. Eng. J. 2021, 422, 130375.

    CAS  Google Scholar 

  5. Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D. W.; Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447.

    CAS  Google Scholar 

  6. Hao, J. N.; Zhang, J.; **a, G. L.; Liu, Y. J.; Zheng, Y.; Zhang, W. C.; Tang, Y. B.; Pang, W. K.; Guo, Z. P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438.

    CAS  Google Scholar 

  7. Liu, Y. T.; Li, X. B.; Zheng, H.; Chen, N. K.; Wang, X. P.; Zhang, X. L.; Sun, H. B.; Zhang, S. B. High-throughput screening for phase-change memory materials. Adv. Funct. Mater. 2021, 31, 2009803.

    CAS  Google Scholar 

  8. Salinga, M.; Kersting, B.; Ronneberger, I.; Jonnalagadda, V. P.; Vu, X. T.; Le Gallo, M.; Giannopoulos, I.; Cojocaru-Mirédin, O.; Mazzarello, R.; Sebastian, A. Monatomic phase change memory. Nat. Mater. 2018, 17, 681–685.

    CAS  Google Scholar 

  9. Zou, C.; Zheng, J. J.; Chang, C.; Majumdar, A.; Lin, L. Y. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Adv. Opt. Mater. 2019, 7, 1900558.

    Google Scholar 

  10. Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

    CAS  Google Scholar 

  11. Wang, X. S.; Song, Z. G.; Wen, W.; Liu, H. N.; Wu, J. X.; Dang, C. H.; Hossain, M.; Iqbal, M. A.; **e, L. M. Potential 2D materials with phase transitions: Structure, synthesis, and device applications. Adv. Mater. 2019, 31, 1804682.

    CAS  Google Scholar 

  12. Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

    CAS  Google Scholar 

  13. Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L. N.; Pan, X. Q.; Wang, D.; Wang, Z. G. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 2018, 18, 3435–3440.

    CAS  Google Scholar 

  14. Wang, Y.; **. Nature 2017, 550, 487–491.

    CAS  Google Scholar 

  15. Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931–937.

    CAS  Google Scholar 

  16. Zhang, F.; Wang, Z.; Dong, J. Y.; Nie, A. M.; **ang, J. Y.; Zhu, W. G.; Liu, Z. Y.; Tao, C. G. Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3. ACS Nano 2019, 13, 8004–8011.

    CAS  Google Scholar 

  17. Johnson, V. L.; Anilao, A.; Koski, K. J. Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride. Nano Res. 2019, 12, 2373–2377.

    CAS  Google Scholar 

  18. Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K. M. Compound copper chalcogenide nanocrystals. Chem. Rev. 2017, 117, 5865–6109.

    CAS  Google Scholar 

  19. Nair, M. T. S.; Guerrero, L.; Nair, P. K. Conversion of chemically deposited CuS thin films to Cu1.8S and Cu1.96S by annealing. Semicond. Sci. Technol. 1998, 13, 1164–1169.

    CAS  Google Scholar 

  20. Okamoto, K.; Kawai, S. Electrical conduction and phase transition of copper sulfides. Jpn. J. Appl. Phys. 1973, 12, 1130–1138.

    CAS  Google Scholar 

  21. Will, G.; Hinze, E.; Abdelrahman, A. R. M. Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure. Eur. J. Mineral. 2002, 14, 591–598.

    CAS  Google Scholar 

  22. Xu, Q.; Huang, B.; Zhao, Y. F.; Yan, Y. F.; Noufi, R.; Wei, S. H. Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 2012, 100, 061906.

    Google Scholar 

  23. Buerger, M. J.; Wuensch, B. J. Distribution of atoms in high chalcocite, Cu2S. Science 1963, 141, 276–277.

    CAS  Google Scholar 

  24. Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of super-cooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.

    CAS  Google Scholar 

  25. Lukashev, P.; Lambrecht, W. R. L.; Kotani, T.; Van Schilfgaarde, M. Electronic and crystal structure of Cu2−xS: Full-potential electronic structure calculations. Phys. Rev. B 2007, 76, 195202.

    Google Scholar 

  26. Romdhane, F. B.; Cretu, O.; Debbichi, L.; Eriksson, O.; Lebègue, S.; Banhart, F. Quasi-2D Cu2S crystals on graphene: In-situ growth and ab-initio calculations. Small 2015, 11, 1253–1257.

    Google Scholar 

  27. Wang, J.; Gao, J. P.; Chou, M. Y.; Landman, U. Structure relaxation and liquidlike enhanced Cu diffusion at the surface of β-Cu2S chalcocite. Nano Lett. 2021, 21, 8895–8900.

    CAS  Google Scholar 

  28. Zheng, H. M.; Rivest, J. B.; Miller, T. A.; Sadtler, B.; Lindenberg, A.; Toney, M. F.; Wang, L. W.; Kisielowski, C.; Alivisatos, A. P. Observation of transient structural-transformation dynamics in a Cu2S Nanorod. Science 2011, 333, 206–209.

    CAS  Google Scholar 

  29. Peng, Z.; Li, S. B.; Weng, M. Y.; Zhang, M. J.; **n, C.; Du, Z.; Zheng, J. X.; Pan, F. First-principles study of Cu9S5: A novel p-type conductive semiconductor. J. Phys. Chem. C 2017, 121, 23317–23323.

    CAS  Google Scholar 

  30. Van Der Stam, W.; Gudjonsdottir, S.; Evers, W. H.; Houtepen, A. J. Switching between plasmonic and fluorescent copper sulfide nanocrystals. J. Am. Chem. Soc. 2017, 139, 13208–13217.

    CAS  Google Scholar 

  31. Itzhak, A.; Teblum, E.; Girshevitz, O.; Okashy, S.; Turkulets, Y.; Burlaka, L.; Cohen-Taguri, G.; Shawat Avraham, E.; Noked, M.; Shalish, I. et al. Digenite (Cu9S5): Layered p-type semiconductor grown by reactive annealing of copper. Chem. Mater. 2018, 30, 2379–2388.

    CAS  Google Scholar 

  32. Fang, Y. J.; Yu, X. Y.; Lou, X. W. Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7744–7748.

    CAS  Google Scholar 

  33. Luo, X. L.; Hu, H. T.; Pan, Z.; Pei, F.; Qian, H. M.; Miao, K. K.; Guo, S. F.; Wang, W.; Feng, G. D. Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J. Hazard. Mater. 2020, 396, 122735.

    CAS  Google Scholar 

  34. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    CAS  Google Scholar 

  35. Xu, D. M.; Yang, Y. F.; Le, K.; Wang, G. W.; Ouyang, A. C.; Li, B.; Liu, W.; Wu, L. L.; Wang, Z.; Liu, J. R. et al. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem. Eng. J. 2021, 417, 129350.

    CAS  Google Scholar 

  36. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

    CAS  Google Scholar 

  37. Zhang, Z.; Sun, J. Y.; Mo, S. D.; Kim, J.; Guo, D. G.; Ju, J.; Yu, Q. L.; Liu, M. Y. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem. Eng. J. 2022, 431, 134287.

    CAS  Google Scholar 

  38. Yang, S. J.; Liu, K. L.; Han, W.; Li, L.; Wang, F. K.; Zhou, X.; Li, H. Q.; Zhai, T. Y. Salt-assisted growth of p-type Cu9S5 nanoflakes for P−N heterojunction photodetectors with high responsivity. Adv. Funct. Mater. 2020, 30, 1908382.

    CAS  Google Scholar 

  39. Yin, L.; Cheng, R. Q.; Wen, Y.; Zhai, B. X.; Jiang, J.; Wang, H.; Liu, C. S.; He, J. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 2022, 34, 2108313.

    CAS  Google Scholar 

  40. Yang, S. J.; Pi, L. J.; Li, L.; Liu, K. L.; Pei, K.; Han, W.; Wang, F. K.; Zhuge, F. W.; Li, H. Q.; Cheng, G. et al. 2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor with high current gain. Adv. Mater. 2021, 33, 2106537.

    CAS  Google Scholar 

  41. Zhao, T. R.; Hasegawa, M.; Takei, H. Crystal growth and characterization of cuprous ferrite (CuFeO2). J. Cryst. Growth 1996, 166, 408–413.

    CAS  Google Scholar 

  42. Jiang, C. M.; Reyes-Lillo, S. E.; Liang, Y. F.; Liu, Y. S.; Liu, G. J.; Toma, F. M.; Prendergast, D.; Sharp, I. D.; Cooper, J. K. Electronic structure and performance bottlenecks of CuFeO2 photocathodes. Chem. Mater. 2019, 31, 2524–2534.

    CAS  Google Scholar 

  43. Han, D.; Wu, C. C.; Zhang, Q. H.; Wei, S. Y.; Qi, X.; Zhao, Y. B.; Chen, Y.; Chen, Y. H.; **ao, L. X.; Zhao, Z. Q. Solution-processed Cu9S5 as a hole transport layer for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 31535–31540.

    CAS  Google Scholar 

  44. Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.

    CAS  Google Scholar 

  45. Li, J.; Zhang, Y.; Zhang, J. R.; Chu, J. W.; **e, L.; Yu, W. Z.; Zhao, X. X.; Chen, C.; Dong, Z.; Huang, L. Y. et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy. Adv. Mater. 2022, 34, 2207796.

    CAS  Google Scholar 

  46. Morales-García, A.; Soares, A. L.; Dos Santos, E. C.; De Abreu, H. A.; Duarte, H. A. First-principles calculations and electron density topological analysis of covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.

    Google Scholar 

Download references

Acknowledgements

J. X. W. acknowledges financial support from the National Natural Science Foundation of China (NSFC) (No. 92064005) and Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL202211SIC). H. T. Y. acknowledges the support from the NSFC (Nos. 51861145201, 52072168, and 21733001) and the National Key Research and Development Program of China (No. 2018YFA0306200). J. W. H. acknowledges the support from the National Key Research and Development Program of China (No. 2021YFA1202901). X. W. F. acknowledges financial support from the NSFC at grant (Nos. 11974191 and 2217830), the National Key Research and Development Program of China at grant (No. 2020YFA0309300), the Natural Science Foundation of Tian** at grant (Nos. 20JCZDJC00560 and 20JCJQJC00210), and the 111 Project (No. B23045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Fu, Hongtao Yuan or **xiong Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Z., Deng, Y. et al. Temperature-driven reversible structural transformation and conductivity switching in ultrathin Cu9S5 crystals. Nano Res. 16, 10515–10521 (2023). https://doi.org/10.1007/s12274-023-5805-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5805-9

Keywords

Navigation