Log in

Ultrasound cascade regulation of nano-oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sonodynamic therapy (SDT) has attracted great interest in the field of cancer therapy because of its non-invasiveness, deep penetration, and spatiotemporal controllability. However, the sonodynamic effect is severely hindered by hypoxia and a high glutathione (GSH) level in tumor microenvironment. In this work, a new type of nanohybrid sonosensitizer is designed, which incorporates several prominent advantages of organic, inorganic, and natural sonosensitizers for imaging-guided SDT and ferroptosis induction. As an endogenous transporter, hemoglobin (Hb) has dual functions of oxygen and iron supplement. Apparently, Hb can transport iron to the tumor site for Fe-dependent ferroptosis, yet this oxygen carrier is able to enhance the sensitivity of tumor cells to oxygen-driven SDT. We innovatively hybridized Hb, sinoporphyrin sodium (DVDMS), and titanium dioxide (TiO2) to prepare an integrated nano-oxygen carrier (designated as HDT) for multifarious cancer theranostics, which not only attained satisfactory sonosensitization of DVDMS/TiO2 but also achieved oxygen-boosted SDT and potent ferroptosis via Hb. Under ultrasound irradiation, the oxygenation of HDT markedly amplified the generation of reactive oxygen species (ROS) in hypoxic tumors, promoted the valence transition of Hb to accelerate Fenton reaction, and led to ferroptosis. This strategy virtually eradicated tumors in situ and exhibited immunoregulatory potential for augmenting anti-tumor effects in vivo and in vitro through ROS formation, O2 self-supplement, GSH depletion, and lipid peroxidation. Collectively, HDT demonstrated excellent dual-modal imaging performance, providing a valuable platform for photoacoustic/fluorescence-guided SDT and ferroptosis induction in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, X. T.; Wang, H. Y.; Wang, S. H.; Sun, X.; Wang, L. J.; Wang, W. W.; Shen, H. Y.; Liu, H. Y. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci. China Life Sci.2018, 61, 415–426.

    Google Scholar 

  2. McHale, A. P.; Callan, J. F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. In Therapeutic Ultrasound; Escoffre, J. M.; Bouakaz, A., Eds.; Springer: Cham, 2016; pp 429–450.

    Google Scholar 

  3. Wood, A. K. W.; Sehgal, C. M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol.2015, 41, 905–928.

    Google Scholar 

  4. Qian, X. Q.; Zheng, Y. Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater.2016, 28, 8097–8129.

    CAS  Google Scholar 

  5. Son, S.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev.2020, 49, 3244–3261.

    CAS  Google Scholar 

  6. Lin, X. H.; Song, J. B.; Chen, X. Y.; Yang, H. H. Ultrasound-activated sensitizers and applications. Angew. Chem., Int. Ed.2020, 59, 14212–14233.

    CAS  Google Scholar 

  7. Liang, C.; Zhang, X. L.; Wang, Z. C.; Wang, W. J.; Yang, M. S.; Dong, X. C. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J. Mater. Chem. B2020, 8, 4748–4763.

    CAS  Google Scholar 

  8. Zhao, N. N.; Yan, L. M.; Zhao, X. Y.; Chen, X. Y.; Li, A. H.; Zheng, D.; Zhou, X.; Dai, X. G.; Xu, F. J. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem. Rev.2019, 119, 1666–1762.

    CAS  Google Scholar 

  9. Wang, X. W.; Zhong, X. Y.; Gong, F.; Chao, Y.; Cheng, L. Newly developed strategies for improving sonodynamic therapy. Mater. Horiz.2020, 7, 2028–2046.

    CAS  Google Scholar 

  10. Chen, X.; Li, J. B.; Kang, R.; Klionsky, D. J.; Tang, D. L. Ferroptosis: Machinery and regulation. Autophagy2021, 17, 2054–2081.

    CAS  Google Scholar 

  11. Nguyen, T. T.; Asakura, Y.; Koda, S.; Yasuda, K. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason. Sonochem.2017, 39, 301–306.

    Google Scholar 

  12. Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell2012, 149, 1060–1072.

    CAS  Google Scholar 

  13. **e, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell. Death Differ.2016, 23, 369–379.

    CAS  Google Scholar 

  14. Liang, X. L.; Chen, M.; Bhattarai, P.; Hameed, S.; Tang, Y. D.; Dai, Z. F. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles. ACS Nano2021, 15, 20164–20180.

    CAS  Google Scholar 

  15. Pan, W. L.; Tan, Y.; Meng, W.; Huang, N. H.; Zhao, Y. B.; Yu, Z. Q.; Huang, Z.; Zhang, W. H.; Sun, B.; Chen, J. X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials2022, 283, 121449.

    CAS  Google Scholar 

  16. Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q. C.; Yu, X. J.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol.2020, 13, 110.

    Google Scholar 

  17. Xu, H. J.; Ye, D.; Ren, M. L.; Zhang, H. Y.; Bi, F. Ferroptosis in the tumor microenvironment: Perspectives for immunotherapy. Trends Mol. Med.2021, 27, 856–867.

    CAS  Google Scholar 

  18. Song, R. D.; Li, T. L.; Ye, J. Y.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y. J.; Zhu, Q. W.; Xu, Z. A. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater.2021, 33, 2101155.

    CAS  Google Scholar 

  19. Tsuchida, E.; Sou, K.; Nakagawa, A.; Sakai, H.; Komatsu, T.; Kobayashi, K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjugate Chem.2009, 20, 1419–1440.

    CAS  Google Scholar 

  20. Xu, T.; Ma, Y. Y.; Yuan, Q. L.; Hu, H. X.; Hu, X. K.; Qian, Z. Y.; Rolle, J. K.; Gu, Y. Q.; Li, S. W. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano2020, 14, 3414–3425.

    CAS  Google Scholar 

  21. Zhou, A. W.; Fang, T. L.; Chen, K. R.; Xu, Y. R.; Chen, Z.; Ning, X. H. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer. Small2022, 18, 2106568.

    CAS  Google Scholar 

  22. Yuan, M.; Liang, S.; Zhou, Y.; **ao, X.; Liu, B.; Yang, C. Z.; Ma, P. A.; Cheng, Z. Y.; Lin, J. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. Nano Lett.2021, 21, 6042–6050.

    CAS  Google Scholar 

  23. Wang, Y. H.; Sun, Y.; Liu, S. P.; Zhi, L. J.; Wang, X. B. Preparation of sonoactivated TiO2-DVDMS nanocomposite for enhanced antibacterial activity. Ultrason. Sonochem.2020, 63, 104968.

    CAS  Google Scholar 

  24. Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S. Hypoxia-targeted drug delivery. Chem. Soc. Rev.2019, 48, 771–813.

    CAS  Google Scholar 

  25. Sung, Y. C.; **, P. R.; Chu, L. A.; Hsu, F. F.; Wang, M. R.; Chang, C. C.; Chiou, S. J.; Qiu, J. T.; Gao, D. Y.; Lin, C. C. et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol.2019, 14, 1160–1169.

    CAS  Google Scholar 

  26. Kumari, R.; Sunil, D.; Ningthoujam, R. S. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J. Control. Release2020, 319, 135–156.

    CAS  Google Scholar 

  27. Cai, L. H.; Hu, C. L.; Liu, S. N.; Zhou, Y.; Liu, Z. D.; Pang, M. L. Covalent organic framework-titanium oxide nanocomposite for enhanced sonodynamic therapy. Bioconjugate Chem.2021, 32, 661–666.

    CAS  Google Scholar 

  28. Wang, X.; Wang, W. P.; Yu, L. D.; Tang, Y.; Cao, J. Y.; Chen, Y. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J. Mater. Chem. B2017, 5, 4579–4586.

    CAS  Google Scholar 

  29. Ozawa, K.; Emori, M.; Yamamoto, S.; Yukawa, R.; Yamamoto, S.; Hobara, R.; Fujikawa, K.; Sakama, H.; Matsuda, I. Electron-hole recombination time at TiO2 single-crystal surfaces: Influence of surface band bending. J. Phys. Chem. Lett.2014, 5, 1953–1957.

    CAS  Google Scholar 

  30. Sha, B. Y.; Gao, W.; Cui, X. Y.; Wang, L.; Xu, F. The potential health challenges of TiO2 nanomaterials. J. Appl. Toxicol.2015, 35, 1086–1101.

    CAS  Google Scholar 

  31. Cai, R.; Chen, C. Y. The crown and the scepter: Roles of the protein corona in nanomedicine. Adv. Mater.2019, 31, 1805740.

    CAS  Google Scholar 

  32. Shanei, A.; Shanei, M. M. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method. Ultrason. Sonochem.2017, 34, 45–50.

    CAS  Google Scholar 

  33. Garcia-Diaz, M.; Huang, Y. Y.; Hamblin, M. R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods2016, 109, 158–166.

    CAS  Google Scholar 

  34. Dai, C.; Zhang, S. J.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano2017, 11, 9467–9480.

    CAS  Google Scholar 

  35. Zhang, H. Y.; Pan, X. T.; Wu, Q. Y.; Guo, J.; Wang, C. H.; Liu, H. Y. Manganese carbonate nanoparticles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration2021, 7, 20210010.

    Google Scholar 

  36. Luo, Z. Y.; Tian, H.; Liu, L. L.; Chen, Z. K.; Liang, R. J.; Chen, Z.; Wu, Z. H.; Ma, A. Q.; Zheng, M. B.; Cai, L. T. Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose. Theranostics2018, 8, 3584–3596.

    CAS  Google Scholar 

  37. Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev.2019, 119, 4881–4985.

    CAS  Google Scholar 

  38. Jiang, X. J.; Stockwell, B. R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol.2021, 33, 266–282.

    Google Scholar 

  39. Hassannia, B.; Vandenabeele, P.; Berghe, T. V. Targeting ferroptosis to iron out cancer. Cancer Cell2019, 35, 830–849.

    CAS  Google Scholar 

  40. Liang, C.; Zhang, X. L.; Yang, M. S.; Dong, X. C. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater.2019, 31, 1904197.

    CAS  Google Scholar 

  41. Gao, M. H.; Yi, J. M.; Zhu, J. J.; Minikes, A. M.; Monian, P.; Thompson, C. B.; Jiang, X. J. Role of mitochondria in ferroptosis. Mol. Cell2019, 73, 354–363.e3.

    CAS  Google Scholar 

  42. Li, Y. N.; Li, M. H.; Liu, L.; Xue, C. C.; Fei, Y.; Wang, X.; Zhang, Y. C.; Cai, K. Y.; Zhao, Y. L.; Luo, Z. Cell-specific metabolic reprogramming of tumors for bioactivatable ferroptosis therapy. ACS Nano2022, 16, 3965–3984.

    CAS  Google Scholar 

  43. Zhou, L. L.; Guan, Q.; Li, W. Y.; Zhang, Z. Y.; Li, Y. A.; Dong, Y. B. A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis. Small2021, 17, 2101368.

    CAS  Google Scholar 

  44. Efimova, I.; Catanzaro, E.; van der Meeren, L.; Turubanova, V. D.; Hammad, H.; Mishchenko, T. A.; Vedunova, M. V.; Fimognari, C.; Bachert, C.; Coppieters, F. et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J. Immunother. Cancer2020, 8, e001369.

    Google Scholar 

  45. Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med.2007, 13, 54–61.

    CAS  Google Scholar 

  46. Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell2014, 156, 317–331.

    CAS  Google Scholar 

  47. Zheng, Y. H.; Han, Y. B.; Sun, Q.; Li, Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration2022, 2, 20210166.

    Google Scholar 

  48. Carney, A. Y. Hyperbaric oxygen therapy: An introduction. Crit. Care Nurs. Quart.2013, 36, 274–279.

    Google Scholar 

  49. Castro, C. I.; Briceno, J. C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs2010, 34, 622–634.

    Google Scholar 

  50. Tian, L.; Goldstein, A.; Wang, H.; Lo, H. C.; Kim, I. S.; Welte, T.; Sheng, K. W.; Dobrolecki, L. E.; Zhang, X. M.; Putluri, N. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature2017, 544, 250–254.

    CAS  Google Scholar 

  51. Hacker, L.; Brunker, J.; Smith, E. S.; Quirós-Gonzalez, I.; Bohndiek, S. E. Photoacoustics resolves species-specific differences in hemoglobin concentration and oxygenation. J. Biomed. Opt.2020, 25, 095002.

    CAS  Google Scholar 

  52. Kunst, R. F.; Verkade, H. J.; Oude Elferink, R. P. J.; van de Graaf, S. F. J. Targeting the four pillars of enterohepatic bile salt cycling; Lessons from genetics and pharmacology. Hepatology2021, 73, 2577–2585.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. GK202105004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobing Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, Y., Han, R. et al. Ultrasound cascade regulation of nano-oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy. Nano Res. 16, 7280–7292 (2023). https://doi.org/10.1007/s12274-023-5377-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5377-0

Keywords

Navigation