Log in

Study of thermoelectric enhanced SERS and photocatalysis with ZnO-metal nanorod arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, a thermoelectric induced surface-enhanced Raman scattering (SERS) substrate consisting of ZnO nanorod arrays and metal nanoparticles is proposed. The intensities of SERS signals are further enhanced by an order of magnitude and the limit of detection (LOD) for the molecules is reduced by at least one order of magnitude after the application of a thermoelectric potential. The enhancement mechanism is analyzed carefully and thoroughly based on the experimental and theoretical results, thus proving that the thermoelectric-induced enhancement of the SERS signals should be classified as a chemical contribution. Furthermore, it is proved that the electric regulation mechanism is universally applicable, and the fabricated substrate realizes enormous enhancements for various types of molecules, such as rhodamine 6G, methyl orange, crystal violet, amaranth, and biological molecules. Additionally, the proposed electric-induced SERS (E-SERS) substrate is also realized to monitor and manipulate the plasmon-activated redox reactions. We believe that this study can promote the course of the research on E-SERS and plasmon-enhanced photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etchegoin, P. G. Quo vadis surface-enhanced Raman scattering? Phys. Chem. Chem. Phys. 2009, 11, 7348–7349.

    Google Scholar 

  2. Ling, X.; **e, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553–561.

    CAS  Google Scholar 

  3. Pan, X. H.; Cao, S. H.; Chen, M.; Zhai, Y. Y.; Xu, Z. Q.; Ren, B.; Li, Y. Q. In situ and sensitive monitoring of configuration-switching involved dynamic adsorption by surface plasmon-coupled directional enhanced Raman scattering. Phys. Chem. Chem. Phys 2020, 22, 12624–12629.

    CAS  Google Scholar 

  4. Zhao, Y. Y.; Ren, X. L.; Zheng, M. L.; **, F.; Liu, J.; Dong, X. Z.; Zhao, Z. S.; Duan, X. M. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron. Adv. 2021, 4, 200101.

    CAS  Google Scholar 

  5. Bharati, M. S. S.; Soma, V. R. Flexible SERS substrates for hazardous materials detection: Recent advances. Opto-Electron. Adv. 2021, 4, 210048.

    CAS  Google Scholar 

  6. Ghopry, S. A.; Sadeghi, S. M.; Farhat, Y.; Berrie, C. L.; Alamri, M.; Wu, J. Z. Intermixed WS2+MoS2 nanodisks/graphene van der Waals heterostructures for surface-enhanced Raman spectroscopy sensing. ACS Appl. Nano Mater. 2021, 4, 2941–2951.

    CAS  Google Scholar 

  7. Ikeda, K.; Suzuki, S.; Uosaki, K. Crystal face dependent chemical effects in surface-enhanced Raman scattering at atomically defined gold facets. Nano Lett. 2011, 11, 1716–1722.

    CAS  Google Scholar 

  8. Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114–3122.

    CAS  Google Scholar 

  9. Ling, X.; Zhang, J. First-layer effect in graphene-enhanced Raman scattering. Small 2010, 6, 2020–2025.

    CAS  Google Scholar 

  10. Tian, Z.; Bai, H.; Chen, C.; Ye, Y. T.; Kong, Q. H.; Li, Y. H.; Fan, W. H.; Yi, W. C.; **, G. C. Quasi-metal for highly sensitive and stable surface-enhanced Raman scattering. iScience 2019, 19, 836–849.

    CAS  Google Scholar 

  11. Tong, L. M.; Zhu, T.; Liu, Z. F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304.

    CAS  Google Scholar 

  12. Tsao, C. W.; Zheng, Y. S.; Sun, Y. S.; Cheng, Y. C. Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst 2021, 146, 7645–7652.

    CAS  Google Scholar 

  13. Valley, N.; Greeneltch, N.; Van Duyne, R. P.; Schatz, G. C. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604.

    CAS  Google Scholar 

  14. Yang, L. T.; Lee, J. H.; Rathnam, C.; Hou, Y. N.; Choi, J. W.; Lee, K. B. Dual-enhanced Raman scattering-based characterization of stem cell differentiation using graphene-plasmonic hybrid nanoarray. Nano Lett. 2019, 19, 8138–8148.

    CAS  Google Scholar 

  15. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

    CAS  Google Scholar 

  16. Cao, Y.; Sun, M. T. Perspective on plexciton based on transition metal dichalcogenides. Appl. Phys. Lett. 2022, 120, 240501.

    CAS  Google Scholar 

  17. Mu, X. J.; Sun, M. T. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 2020, 117, 091601.

    CAS  Google Scholar 

  18. Lin, W. H.; Shi, Y.; Yang, X. Z.; Li, J.; Cao, E.; Xu, X. F.; Pullerits, T.; Liang, W. J.; Sun, M. T. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 2017, 3, 33–40.

    Google Scholar 

  19. Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 1, 4847–4861.

    Google Scholar 

  20. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 1998, 108, 5013–5026.

    CAS  Google Scholar 

  21. Liu, Y. W.; Ma, H.; Han, X. X.; Zhao, B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: Synergistic contribution of plasmons and charge transfer. Mater. Horiz. 2021, 8, 370–382.

    CAS  Google Scholar 

  22. Siddhanta, S.; Thakur, V.; Narayana, C.; Shivaprasad, S. M. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces 2022, 4, 5807–5812.

    Google Scholar 

  23. Yang, T.; Liu, W. N.; Li, L. D.; Chen, J. H.; Hou, X. M.; Chou, K. C. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate. Nanoscale 2017, 9, 2376–2384.

    CAS  Google Scholar 

  24. Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 2017, 5, 72–78.

    Google Scholar 

  25. Lin, W. H.; Cao, E.; Zhang, L. Q.; Xu, X. F.; Song, Y. Z.; Liang, W. J.; Sun, M. T. Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. Nanoscale 2018, 10, 5482–5488.

    CAS  Google Scholar 

  26. Cao, E.; Guo, X.; Zhang, L. Q.; Shi, Y.; Lin, W. H.; Liu, X. C.; Fang, Y. R.; Zhou, L. Y.; Sun, Y. H.; Song, Y. Z. et al. Electrooptical synergy on plasmon-exciton-codriven surface reduction reactions. Adv. Mater. Interfaces 2017, 4, 1700869.

    Google Scholar 

  27. Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824–1828.

    CAS  Google Scholar 

  28. Sinha, G.; Depero, L. E.; Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Interfaces 2011, 3, 2557–2563.

    CAS  Google Scholar 

  29. Wang, X. T.; Shi, W. X.; **, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

    CAS  Google Scholar 

  30. Kandjani, A. E.; Sabri, Y. M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S. K. Detect, remove and reuse: A new paradigm in sensing and removal of Hg(II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584.

    Google Scholar 

  31. Liu, L. P.; Yang, H. T.; Ren, X.; Tang, J.; Li, Y. F.; Zhang, X. Q.; Cheng, Z. H. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. Nanoscale 2015, 7, 5147–5151.

    CAS  Google Scholar 

  32. Yang, L. L.; Yang, Y.; Ma, Y. F.; Li, S.; Wei, Y. Q.; Huang, Z. R.; Long, N. V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials (Basel) 2017, 7, 398.

    Google Scholar 

  33. Koleva, M. E.; Nedyalkov, N. N.; Nikov, R.; Nikov, R.; Atanasova, G.; Karashanova, D.; Nuzhdin, V. I.; Valeev, V. F.; Rogov, A. M.; Stepanov, A. L. Fabrication of Ag/ZnO nanostructures for SERS applications. Appl. Surf. Sci. 2020, 508, 145227.

    CAS  Google Scholar 

  34. Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K.; Luo, S. C. Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sens. Actuators B:Chem. 2015, 207, 430–436.

    CAS  Google Scholar 

  35. He, X.; Wang, H.; Li, Z. B.; Chen, D.; Liu, J. H.; Zhang, Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale 2015, 7, 8619–8626.

    CAS  Google Scholar 

  36. Zhou, J.; Zhang, J. S.; Yang, H. T.; Wang, Z.; Shi, J. A.; Zhou, W.; Jiang, N.; **an, G. Y.; Qi, Q.; Weng, Y. X. et al. Plasmon-induced hot electron transfer in Au-ZnO heterogeneous nanorods for enhanced SERS. Nanoscale 2019, 11, 11782–11788.

    CAS  Google Scholar 

  37. Liu, C. Y.; Xu, X. H.; Wang, C. D.; Qiu, G. Y.; Ye, W. C.; Li, Y. M.; Wang, D. G. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sens. Actuators B:Chem. 2020, 307, 127634.

    Google Scholar 

  38. Pal, A. K.; Pagal, S.; Prashanth, K.; Chandra, G. K.; Umapathy, S.; Mohan, D. B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens. Actuators B:Chem. 2019, 279, 157–169.

    CAS  Google Scholar 

  39. Yu, J.; Guo, Y.; Wang, H. J.; Su, S.; Zhang, C.; Man, B. Y.; Lei, F. C. Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection. J. Phys. Chem. Lett. 2019, 10, 3676–3680.

    CAS  Google Scholar 

  40. Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

    CAS  Google Scholar 

  41. Yao, J. C.; Quan, Y. N.; Gao, M.; Gao, R. X.; Chen, L.; Liu, Y.; Lang, J. H.; Shen, H.; Zhang, Y. J.; Yang, L. L. et al. AgNPs decorated Mg-doped ZnO heterostructure with dramatic SERS activity for trace detection of food contaminants. J. Mater. Chem. C 2019, 7, 8199–8208.

    CAS  Google Scholar 

  42. Yang, S.; Yao, J. C.; Quan, Y. N.; Hu, M. Y.; Su, R.; Gao, M.; Han, D. L.; Yang, J. H. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light Sci. Appl. 2020, 9, 117.

    CAS  Google Scholar 

  43. Barbillon, G.; Noblet, T.; Humbert, C. Highly crystalline ZnO film decorated with gold nanospheres for PIERS chemical sensing. Phys. Chem. Chem. Phys. 2020, 22, 21000–21004.

    CAS  Google Scholar 

  44. Xue, X. X.; Ruan, W. D.; Yang, L. B.; Ji, W.; **e, Y. F.; Chen, L.; Song, W.; Zhao, B.; Lombardi, J. R. Surface-enhanced Raman scattering of molecules adsorbed on Co-doped ZnO nanoparticles. J. Raman Spectrosc. 2012, 43, 61–64.

    CAS  Google Scholar 

  45. Xu, J.; He, H. X.; Jian, X. X.; Qu, K. Z.; Xu, J. W.; Li, C. W.; Gao, Z. D.; Song, Y. Y. Wireless battery-free generation of electric fields on one-dimensional asymmetric Au/ZnO nanorods for enhanced Raman sensing. Anal. Chem. 2021, 93, 9286–9295.

    CAS  Google Scholar 

  46. Wang, Y.; Zhu, L. P.; Feng, Y. J.; Wang, Z. N.; Wang, Z. L. Comprehensive pyro-phototronic effect enhanced ultraviolet detector with ZnO/Ag schottky junction. Adv. Funct. Mater. 2019, 29, 1807111.

    Google Scholar 

  47. Feng, Y. J.; Zhang, Y. L.; Wang, Y.; Wang, Z. N. Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy 2018, 54, 429–436.

    CAS  Google Scholar 

  48. Wu, T. F.; Wang, A. J.; Zheng, L.; Wang, G. F.; Tu, Q. Y.; Lv, B. W.; Liu, Z. L.; Wu, Z. L.; Wang, Y. S. Evolution of native defects in ZnO nanorods irradiated with hydrogen ion. Sci. Rep. 2019, 9, 17393.

    Google Scholar 

  49. Fujimori, H.; Kakihana, M.; Ioku, K.; Goto, S.; Yoshimura, M. Advantage of anti-Stokes Raman scattering for high-temperature measurements. Appl. Phys. Lett. 2001, 79, 937–939.

    CAS  Google Scholar 

  50. Koleva, M. E.; Nedyalkov, N. N.; Atanasov, P. A.; Gerlach, J. W.; Hirsch, D.; Prager, A.; Rauschenbach, B.; Fukata, N.; Jevasuwan, W. Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method. J. Alloys Compd. 2016, 665, 282–287.

    CAS  Google Scholar 

  51. Kumar, A.; Dixit, T.; Palani, I. A.; Nakamura, D.; Higashihata, M.; Singh, V. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor. Phys. E:Low-dimens. Syst. Nanostruct. 2017, 93, 97–104.

    CAS  Google Scholar 

  52. Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

    CAS  Google Scholar 

  53. Sun, H. H.; Yao, M. G.; Song, Y. P.; Zhu, L. Y.; Dong, J. J.; Liu, R.; Li, P.; Zhao, B.; Liu, B. B. Pressure-induced SERS enhancement in a MoS2/Au/R6G system by a two-step charge transfer process. Nanoscale 2019, 11, 21493–21501.

    CAS  Google Scholar 

  54. Cong, S.; Liu, X. H.; Jiang, Y. X.; Zhang, W.; Zhao, Z. G. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation (Camb.) 2020, 1, 100051.

    CAS  Google Scholar 

  55. Araujo, T. P.; Quiroz, J.; Barbosa, E. C. M.; Camargo, P. H. C. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Curr. Opin. Colloid Interface Sci. 2019, 39, 110–122.

    CAS  Google Scholar 

  56. Seemala, B.; Therrien, A. J.; Lou, M. H.; Li, K.; Finzel, J. P.; Qi, J.; Nordlander, P.; Christopher, P. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields? ACS Energy Lett. 2019, 4, 1803–1809.

    CAS  Google Scholar 

  57. Fuku, K.; Hayashi, R.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem., Int. Ed. 2013, 52, 7446–7450.

    CAS  Google Scholar 

  58. Cao, Y.; Cheng, Y. Q.; Sun, M. T. Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev., in press, https://doi.org/10.1080/05704928.2021.1910286.

  59. Yang, R.; Cheng, Y. Q.; Song, Y. J.; Belotelov, V. I.; Sun, M. T. Plasmon and plexciton driven interfacial catalytic reactions. Chem. Rec. 2021, 21, 797–819.

    Google Scholar 

  60. Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

    CAS  Google Scholar 

  61. Zheng, L. J.; Li, F.; Song, L. N.; Li, M. L.; Wang, X. X.; Xu, J. J. Localized surface plasmon resonance enhanced electrochemical kinetics and product selectivity in aprotic Li-O2 batteries. Energy Storage Mater. 2021, 42, 618–627.

    Google Scholar 

  62. Chou, J. A.; Chung, C. L.; Ho, P. C.; Luo, C. H.; Tsai, Y. H.; Wu, C. K.; Kuo, C. W.; Hsiao, Y. S.; Yu, H. H.; Chen, P. L. Organic electrochemical transistors/SERS-active hybrid biosensors featuring gold nanoparticles immobilized on thiol-functionalized PEDOT films. Front. Chem. 2019, 7, 281.

    CAS  Google Scholar 

  63. Zhang, K.; Liu, Y.; Wang, Y. N.; Zhang, R.; Liu, J. G.; Wei, J.; Qian, H. F.; Qian, K.; Chen, R. P.; Liu, B. H. Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl. Mater. Interfaces 2018, 10, 15388–15394.

    CAS  Google Scholar 

  64. Phung, V. D.; Jung, W. S.; Nguyen, T. A.; Kim, J. H.; Lee, S. W. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. Nanoscale 2018, 10, 22493–22503.

    CAS  Google Scholar 

  65. Li, L.; Lu, Y.; Qian, Z. T.; Yang, Z. Y.; Yang, K.; Zong, S. F.; Wang, Z. Y.; Cui, Y. P. Ultra-sensitive surface enhanced Raman spectroscopy sensor for in-situ monitoring of dopamine release using zipper-like ortho-nanodimers. Biosens. Bioelectron. 2021, 180, 113100.

    CAS  Google Scholar 

  66. Tang, L. J.; Li, S.; Han, F.; Liu, L. Q.; Xu, L. G.; Ma, W.; Kuang, H.; Li, A. K.; Wang, L. B.; Xu, C. L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 2015, 71, 7–12.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 11974222, 12004226, 12174229, and 11904214), the Natural Science Foundation of Shandong Province (No. ZR2020QA075), the Qingchuang Science and Technology Plan of Shandong Province (No. 2021KJ006), and the China Postdoctoral Science Foundation (No. 2019M662423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Pan, Baoyuan Man or Zhen Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Tan, J., Ji, C. et al. Study of thermoelectric enhanced SERS and photocatalysis with ZnO-metal nanorod arrays. Nano Res. 16, 5427–5435 (2023). https://doi.org/10.1007/s12274-022-5253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5253-y

Keywords

Navigation