Log in

Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The residual Li and Li+/Ni2+ cation mixing play essential roles in the electrochemical properties of Ni-rich cathodes. However, a general relationship between the residual Li conversion, cation mixing, and their effects on the Li+ kinetics and structural stability has yet to be established, due to the presence of cobalt in the cathode. Here, we explore the synergistic impact of the residual Li conversion and cation ordering on a Co-free Ni-rich cathode (i.e., LiNi0.95Mn0.05O2). It discloses that the rate capability is mainly affected by residual Li contents and operating voltage. Specifically, residual Li can be electrochemically converted to cathode electrolyte interphase (CEI) below 4.3 V, thus inducing high interphase resistance, and decomposes to produce CO2-dominated gas at 4.5 V, causing temporary enhancement of Li+ diffusivity but severe surface degradation during cycling. Moreover, the cycling performance of Co-free Ni-rich cathode is not only determined by Li+/Ni2+ cation-ordered superlattice, which enhances the structural stability as it functions as the pillar to impede lattice collapse at a highly charged state, but also by the robust CEI layers which protect the bulk from electrolyte attack under 4.3 V. These findings promote an in-depth understanding of residual Li conversion and Li+/Ni2+ cation ordering on Co-free Ni-rich cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, D.; Fan, J. M.; Yao, Z.; **e, H. X.; Cui, J. X.; Yang, Y. J.; Ding, X. K.; Ji, J. P.; Wu, S. X.; Ling, M. et al. An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial coulombic efficiency. J. Energy Chem. 2021, 62, 120–126.

    Article  CAS  Google Scholar 

  2. Zou, Y. G.; Mao, H. C.; Meng, X. H.; Du, Y. H.; Sheng, H.; Yu, X. Q.; Shi, J. L.; Guo, Y. G. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode via surface gradient penetration of tantalum. Angew. Chem., Int. Ed. 2021, 60, 26535–26539.

    Article  CAS  Google Scholar 

  3. Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk—shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

    Article  CAS  Google Scholar 

  4. Nam, G. W.; Park, N. Y.; Park, K. J.; Yang, J. H.; Liu, J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001.

    Article  CAS  Google Scholar 

  5. You, B. Z.; Wang, Z. X.; Shen, F.; Chang, Y. J.; Peng, W. J.; Li, X. H.; Guo, H. J.; Hu, Q. Y.; Deng, C. W.; Yang, S. et al. Research progress of single-crystal nickel-rich cathode materials for lithium ion batteries. Small Methods 2021, 5, 2100234.

    Article  CAS  Google Scholar 

  6. Du, Y. H.; Sheng, H.; Meng, X. H.; Zhang, X. D.; Zou, Y. G.; Liang, J. Y.; Fan, M.; Wang, F. Y.; Tang, J. L.; Cao, F. F. et al. Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano Energy 2022, 94, 106901.

    Article  CAS  Google Scholar 

  7. Wu, F.; Liu, N.; Chen, L.; Li, N.; Dong, J. Y.; Lu, Y.; Tan, G. Q.; Xu, M. Z.; Cao, D. Y.; Liu, Y. F. et al. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J. Energy Chem. 2021, 62, 351–358.

    Article  CAS  Google Scholar 

  8. Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; **a, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.

    Article  Google Scholar 

  9. Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

    Article  CAS  Google Scholar 

  10. Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.

    Article  CAS  Google Scholar 

  11. Li, M.; Lu, J. Cobalt in lithium-ion batteries: Replacements are sought for cobalt, a costly element used in lithium-ion battery cathodes. Science 2020, 367, 979–980.

    Article  CAS  Google Scholar 

  12. Choi, J. U.; Voronina, N.; Sun, Y. K.; Myung, S. T. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Adv. Energy Mater. 2020, 10, 2002027.

    Article  CAS  Google Scholar 

  13. Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards develo** Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.

    Article  CAS  Google Scholar 

  14. Cho, D. H.; Jo, C. H.; Cho, W.; Kim, Y. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J. Electrochem. Soc. 2014, 161, A920–A926.

    Article  CAS  Google Scholar 

  15. Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

    Article  Google Scholar 

  16. Seong, W. M.; Cho, K. H.; Park, J. W.; Park, H.; Eum, D.; Lee, M. H.; Kim, I. S. S.; Lim, J.; Kang, K. Controlling residual lithium in high-nickel (> 90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 18662–18669.

    Article  CAS  Google Scholar 

  17. Xu, G. L.; Liu, X.; Daali, A.; Amine, R.; Chen, Z. H.; Amine, K. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 2020, 30, 2004748.

    Article  CAS  Google Scholar 

  18. Zhang, J. T.; Tan, X. H.; Guo, L. M.; Jiang, Y.; Liu, S. N.; Wang, H. F.; Kang, X. H.; Chu, W. G. Controllable formation of lithium carbonate surface phase during synthesis of nickel-rich LiNi0.9Mn0.1O2 in air and its protection role in electrochemical reaction. J. Alloys Compd. 2019, 771, 42–50.

    Article  CAS  Google Scholar 

  19. Li, L. J.; Chen, J. X.; Huang, H.; Tan, L.; Song, L. B.; Wu, H. H. Wang, C.; Zhao, Z. X.; Yi, H. L.; Duan, J. F. et al. Role of residual Li and oxygen vacancies in Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 42554–42563.

    Article  CAS  Google Scholar 

  20. Li, L. J.; Fu, L. Z.; Li, M.; Wang, C.; Zhao, Z. X.; **e, S. C.; Lin, H. C.; Wu, X. W.; Liu, H. D.; Zhang, L. et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy Chem. 2022, 71, 588–594.

    Article  CAS  Google Scholar 

  21. Ryu, H. H.; Park, N. Y.; Yoon, D. R.; Kim, U. H.; Yoon, C. S.; Sun, Y. K. New class of Ni-rich cathode materials Li[NixCoyB1−x−y]O2 for next lithium batteries. Adv. Energy Mater. 2020, 10, 2000495.

    Article  CAS  Google Scholar 

  22. Wang, D. W.; Kou, R. H.; Ren, Y.; Sun, C. J.; Zhao, H.; Zhang, M. J.; Li, Y.; Huq, A.; Ko, J. Y. P.; Pan, F. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 2017, 29, 1606715.

    Article  Google Scholar 

  23. Wang, S. N.; Hua, W. B.; Missyul, A.; Darma, M. S. D.; Tayal, A.; Indris, S.; Ehrenberg, H.; Liu, L. J.; Knapp, M. Kinetic control of long-range cationic ordering in the synthesis of layered Ni-rich oxides. Adv. Funct. Mater. 2021, 31, 2009949.

    Article  CAS  Google Scholar 

  24. Seong, W. M.; Kim, Y.; Manthiram, A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem. Mater. 2020, 32, 9479–9489.

    Article  CAS  Google Scholar 

  25. Kim, Y.; Park, H.; Warner, J. H.; Manthiram, A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 941–948.

    Article  CAS  Google Scholar 

  26. Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; **a, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

    Article  Google Scholar 

  27. Ke, C. Z.; Liu, F.; Zheng, Z. M.; Zhang, H. H.; Cai, M. T.; Li, M.; Yan, Q. Z.; Chen, H. X.; Zhang, Q. B. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021, 40, 1347–1356.

    Article  CAS  Google Scholar 

  28. Liu, Y.; Tang, L. B.; Wei, H. X.; Zhang, X. H.; He, Z. J.; Li, Y. J.; Zheng, J. C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043.

    Article  CAS  Google Scholar 

  29. Fan, X. M.; Ou, X.; Zhao, W. G.; Liu, Y.; Zhang, B.; Zhang, J. F.; Zou, L. F.; Seidl, L.; Li, Y. Z.; Hu, G. R. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 2021, 12, 5320.

    Article  CAS  Google Scholar 

  30. Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

    Article  CAS  Google Scholar 

  31. Cai, M. T.; Zhang, H. H.; Zhang, Y. G.; **ao, B. S.; Wang, L.; Li, M.; Wu, Y.; Sa, B. S.; Liao, H. G.; Zhang, L. et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933–945.

    Article  CAS  Google Scholar 

  32. Sheng, H.; Meng, X. H.; **ao, D. D.; Fan, M.; Chen, W. P.; Wan, J.; Tang, J. L.; Zou, Y. G.; Wang, F. Y.; Wen, R. et al. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification. Adv. Mater. 2022, 34, 2108947.

    Article  CAS  Google Scholar 

  33. Liu, W.; Li, J. X.; Li, W. T.; Xu, H. Y.; Zhang, C.; Qiu, X. P. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat. Commun. 2020, 11, 3629.

    Article  CAS  Google Scholar 

  34. Heenan, T. M. M.; Wade, A.; Tan, C.; Parker, J. E.; Matras, D.; Leach, A. S.; Robinson, J. B.; Llewellyn, A.; Dimitrijevic, A.; Jervis, R. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2002655.

    Article  CAS  Google Scholar 

  35. Sun, H. H.; Manthiram, A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem. Mater. 2017, 29, 8486–8493.

    Article  CAS  Google Scholar 

  36. Li, H. Y.; Liu, A.; Zhang, N.; Wang, Y. Q.; Yin, S.; Wu, H. H.; Dahn, J. R. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries. Chem. Mater. 2019, 31, 7574–7583.

    Article  CAS  Google Scholar 

  37. Aishova, A.; Park, G. T.; Yoon, C. S.; Sun, Y. K. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv. Energy Mater. 2020, 10, 1903179.

    Article  CAS  Google Scholar 

  38. Kim, U. H.; Park, G. T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y. S.; Shapiro, D. A.; Maglia, F.; Kim, S. J.; Lamp, P. et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ. Sci. 2021, 14, 1573–1583.

    Article  CAS  Google Scholar 

  39. Yoon, C. S.; Choi, M. J.; Jun, D. W.; Zhang, Q.; Kaghazchi, P.; Kim, K. H.; Sun, Y. K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem. Mater. 2018, 30, 1808–1814.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51774051), the Science and Technology Planning Project of Hunan Province (No. 2019RS2034), the Hunan High-tech Industry Science and Technology Innovation Leading Plan (No. 2020GK2072), and the Changsha City Fund for Distinguished and Innovative Young Scholars (No. KQ1707014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjun Li.

Electronic Supplementary Material

12274_2022_4889_MOESM1_ESM.pdf

Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tan, L., Yi, H. et al. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes. Nano Res. 15, 9038–9046 (2022). https://doi.org/10.1007/s12274-022-4889-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4889-0

Keywords

Navigation