Log in

Morphology-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molecular self-assembly is a natured-inspired strategy to integrate individual functional molecules into supramolecular nanostructured materials through noncovalent bond interactions for solar to fuel conversion. However, the design and engineering of the morphology, size, and orderly stacking of supramolecular nanostructures remain a great challenge. In this study, regular porphyrin nanocrystals with different orderly stacked structures are synthesized through noncovalent self-assembly of Pt(II) meso-tetra (4-carboxyphenyl) porphine (PtTCPP), using surfactants with different electronegativity. The synergy of noncovalent bond interactions between porphyrin molecules, and between porphyrin molecules and surfactants resulted in different molecular packing patterns. Due to the spatial ordering of PtTCPP molecules, the different nanocrystals exhibit both collective optical properties and morphology-dependent activities in photocatalytic hydrogen production. The measurements of the photodeposition of dual cocatalysts showed that the photogenerated electrons and holes selectively aggregated at different active sites, revealing separation pathways and directional transfer of photogenerated electrons and holes in the assemblies. This study provides a new strategy to exert rational control over porphyrin self-assembly nanocrystals for highly efficient water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dumele, O.; Chen, J. H.; Passarelli, J. V.; Stupp, S. I. Supramolecular energy materials. Adv. Mater. 2020, 32, 1907247.

    Article  CAS  Google Scholar 

  2. Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.

    Article  CAS  Google Scholar 

  3. Pochan, D.; Scherman, O. Introduction: Molecular self-assembly. Chem. Rev. 2021, 121, 13699–13700.

    Article  CAS  Google Scholar 

  4. Chen, P. Z.; Weng, Y. X.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Light-harvesting systems based on organic nanocrystals to mimic chlorosomes. Angew. Chem., Int. Ed. 2016, 55, 2759–2763.

    Article  CAS  Google Scholar 

  5. Ariga, K.; Jia, X. F.; Song, J. W.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. B. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59, 15424–15446.

    Article  CAS  Google Scholar 

  6. Guo, Y. B.; Xu, L.; Liu, H. B.; Li, Y. J.; Che, C. M.; Li, Y. L. Self-assembly of functional molecules into 1D crystalline nanostructures. Adv. Mater. 2015, 27, 985–1013.

    Article  CAS  Google Scholar 

  7. Rosenne, S.; Grinvald, E.; Shirman, E.; Neeman, L.; Dutta, S.; Bar-Elli, O.; Ben-Zvi, R.; Oksenberg, E.; Milko, P.; Kalchenko, V. et al. Self-assembled organic nanocrystals with strong nonlinear optical response. Nano Lett. 2015, 15, 7232–7237.

    Article  CAS  Google Scholar 

  8. Sirohiwal, A.; Neese, F.; Pantazis, D. A. Protein matrix control of reaction center excitation in photosystem II. J. Am. Chem. Soc. 2020, 142, 18174–18190.

    Article  CAS  Google Scholar 

  9. Li, Z. L.; Lin, Z. Q. Self-assembly of bolaamphiphiles into 2D nanosheets via synergistic and meticulous tailoring of multiple noncovalent interactions. ACS Nano 2021, 15, 3152–3160.

    Article  CAS  Google Scholar 

  10. Li, J. Q.; Luo, W. D.; Zhang, S. Q.; Ma, C. Y.; **ao, X. W.; Duan, W. B.; Zeng, Q. D. The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces. Nano Res. 2022, 15, 1691–1697.

    Article  CAS  Google Scholar 

  11. Hecht, M.; Würthner, F. Supramolecularly engineered J-aggregates based on perylene bisimide dyes. Acc. Chem. Res. 2021, 54, 642–653.

    Article  CAS  Google Scholar 

  12. Amabilino, D. B.; Smith, D. K.; Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 2017, 46, 2404–2420.

    Article  CAS  Google Scholar 

  13. Zhang, C. C.; Chen, P. L.; Dong, H. L.; Zhen, Y. G.; Liu, M. H.; Hu, W. P. Porphyrin supramolecular 1D structures via surfactant-assisted self-assembly. Adv. Mater. 2015, 27, 5379–5387.

    Article  CAS  Google Scholar 

  14. Rajora, M. A.; Lou, J. W. H.; Zheng, G. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 6433–6469.

    Article  CAS  Google Scholar 

  15. Wang, J. H.; Gao, S. Q.; Wang, X.; Zhang, H. Z.; Ren, X. T.; Liu, J. W.; Bai, F. Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Res. 2022, 15, 2347–2354.

    Article  CAS  Google Scholar 

  16. Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2022, 15, 2335–2346.

    Article  CAS  Google Scholar 

  17. **, J.; Yang, F.; Li, B.; Liu, D.; Wu, L. H.; Li, Y.; Gu, N. Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Res. 2020, 13, 999–1007.

    Article  CAS  Google Scholar 

  18. Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796–3803.

    Article  CAS  Google Scholar 

  19. Li, P.; Xu, G. J.; Wang, N. N.; Guan, B.; Zhu, S. Q.; Chen, P. L.; Liu, M. H. 0D, 1D, and 2D supramolecular nanoassemblies of a porphyrin: Controllable assembly, and dimensionality-dependent catalytic performances. Adv. Funct. Mater. 2021, 31, 2100367.

    Article  CAS  Google Scholar 

  20. Wang, J. F.; Zhong, Y.; Wang, L.; Zhang, N.; Cao, R. H.; Bian, K. F.; Alarid, L.; Haddad, R. E.; Bai, F.; Fan, H. Y. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523–6528.

    Article  CAS  Google Scholar 

  21. Cao, R. H.; Wang, G. Y.; Ren, X. T.; Duan, P. C.; Wang, L.; Li, Y. S.; Chen, X.; Zhu, R.; Jia, Y.; Bai, F. Self-assembled porphyrin nanoleaves with unique crossed transportation of photogenerated carriers to enhance photocatalytic hydrogen production. Nano Lett. 2022, 22, 157–163.

    Article  CAS  Google Scholar 

  22. Kato, K.; Shinoda, T.; Nagao, R.; Akimoto, S.; Suzuki, T.; Dohmae, N.; Chen, M.; Allakhverdiev, S. I.; Shen, J. R.; Akita, F. et al. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat. Commun. 2020, 11, 238.

    Article  CAS  Google Scholar 

  23. Otsuki, J. Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A 2018, 6, 6710–6753.

    Article  CAS  Google Scholar 

  24. Pan, J. N.; Kang, L. T.; Huang, P.; Jia, Z. Y.; Liu, J. J.; Yao, J. N. The controllable synthesis of ultrafine one-dimensional small-molecule semiconducting nanocrystals in surfactant-assisted wet chemical reactions and their confinement effect. J. Mater. Chem. C 2017, 5, 6377–6385.

    Article  CAS  Google Scholar 

  25. Zhang, Z.; Kim, D. S.; Lin, C. Y.; Zhang, H. C.; Lammer, A. D.; Lynch, V. M.; Popov, I.; Miljanić, O. Š.; Anslyn, E. V.; Sessler, J. L. Expanded porphyrin-anion supramolecular assemblies: Environmentally responsive sensors for organic solvents and anions. J. Am. Chem. Soc. 2015, 137, 7769–7774.

    Article  CAS  Google Scholar 

  26. Hu, J. S.; Guo, Y. G.; Liang, H. P.; Wan, L. J.; Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 2005, 127, 17090–17095.

    Article  CAS  Google Scholar 

  27. Zhong, Y.; Wang, Z. X.; Zhang, R. F.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Interfacial self-assembly driven formation of hierarchically structured nanocrystals with photocatalytic activity. ACS Nano 2014, 8, 827–833.

    Article  CAS  Google Scholar 

  28. Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

    Article  CAS  Google Scholar 

  29. Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806626.

    Article  Google Scholar 

  30. Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.

    Article  CAS  Google Scholar 

  31. Chen, S. D.; Ren, X. T.; Tian, S. F.; Sun, J. J.; Bai, F. Controllable synthesis of cobalt porphyrin nanocrystals through micelle confinement self-assembly. MRS Adv. 2020, 5, 2147–2155.

    Article  CAS  Google Scholar 

  32. Herbst, S.; Soberats, B.; Leowanawat, P.; Stolte, M.; Lehmann, M.; Würthner, F. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 2018, 9, 2646.

    Article  Google Scholar 

  33. Chen, Y. Z.; Yan, C. X.; Dong, J. Q.; Zhou, W. J.; Rosei, F.; Feng, Y.; Wang, L. N. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099.

    Article  CAS  Google Scholar 

  34. Sengupta, S.; Würthner, F. Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 2013, 46, 2498–2512.

    Article  CAS  Google Scholar 

  35. Krzeszewski, M.; Espinoza, E. M.; Červinka, C.; Derr, J. B.; Clark, J. A.; Borchardt, D.; Beran, G. J. O.; Gryko, D. T.; Vullev, V. I. Dipole effects on electron transfer are enormous. Angew. Chem., Int. Ed. 2018, 57, 12365–12369.

    Article  CAS  Google Scholar 

  36. Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

    Article  CAS  Google Scholar 

  37. Qu, D.; Liu, J.; Miao, X.; Han, M. M.; Zhang, H. C.; Cui, Z.; Sun, S. R.; Kang, Z. H.; Fan, H. Y.; Sun, Z. C. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B: Environ. 2018, 227, 418–424.

    Article  CAS  Google Scholar 

  38. Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771055, U21A2085, and U1604139), the Zhongyuan High Level Talents Special Support Plan (No. 204200510010), the Scientific and Technological Innovation Team in University of Henan Province (No. 20IRTSTHN001), and Science and Technique Foundation of Henan Province (No. 222102310544).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajie Sun or Feng Bai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Wang, J., Li, Y. et al. Morphology-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen production. Nano Res. 15, 5719–5725 (2022). https://doi.org/10.1007/s12274-022-4286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4286-6

Keywords

Navigation