Log in

Stacking monolayers at will: A scalable device optimization strategy for two-dimensional semiconductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In comparison to monolayer (1L), multilayer (ML) two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) exhibit more application potential for electronic and optoelectronic devices due to their improved current carrying capability, higher mobility, and broader spectral response. However, the investigation of devices based on wafer-scale ML-TMDs is still restricted by the synthesis of uniform and high-quality ML films. In this work, we propose a strategy of stacking MoS2 monolayers via a vacuum transfer method, by which one could obtain wafer-scale high-quality MoS2 films with the desired number of layers at will. The optical characteristics of these stacked ML-MoS2 films (> 2L) indicate a weak interlayer coupling. The stacked ML-MoS2 phototransistors show improved optoelectrical performances and a broader spectral response (approximately 300–1,000 nm) than that of 1L-MoS2. Additionally, the dual-gate ML-MoS2 transistors enable enhanced electrostatic control over the stacked ML-MoS2 channel, and the 3L and 4L thicknesses exhibit the optimal device performances according to the turning point of the current on/off ratio and the subthreshold swing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2018, 29, 1803807.

    Article  Google Scholar 

  2. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

    Article  CAS  Google Scholar 

  3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  CAS  Google Scholar 

  4. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  CAS  Google Scholar 

  5. Kwon, J.; Lee, J. Y.; Yu, Y. J.; Lee, C. H.; Cui, X.; Hone, J.; Lee, G. H. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 2017, 9, 6151–6157.

    Article  CAS  Google Scholar 

  6. Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    Article  CAS  Google Scholar 

  7. Shin, G. H.; Park, C.; Lee, K. J.; **, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.

    Article  CAS  Google Scholar 

  8. Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733–10740.

    Article  CAS  Google Scholar 

  9. Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

    Article  CAS  Google Scholar 

  10. Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

    Article  Google Scholar 

  11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  12. Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D’Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M. et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4, 045013.

    Article  Google Scholar 

  13. Ling, Z. P.; Yang, R.; Chai, J. W.; Wang, S. J.; Leong, W. S.; Tong, Y.; Lei, D.; Zhou, Q.; Gong, X.; Chi, D. Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 2015, 23, 13580–13586.

    Article  CAS  Google Scholar 

  14. Tan, L. K.; Liu, B.; Teng, J. H.; Guo, S. F.; Low, H. Y.; Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584–10588.

    Article  CAS  Google Scholar 

  15. Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644–1650.

    Article  CAS  Google Scholar 

  16. Jiao, L.; Jie, W. J.; Yang, Z.; Wang, Y. H.; Chen, Z. W.; Zhang, X.; Tang, W. H.; Wu, Z. P.; Hao, J. H. Layer-dependent photoresponse of 2D MoS2 films prepared by pulsed laser deposition. J. Mater.Chem. C 2019, 7, 2522–2529.

    Article  CAS  Google Scholar 

  17. Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222.

    Article  CAS  Google Scholar 

  18. Kim, T.; Mun, J.; Park, H.; Joung, D.; Diware, M.; Won, C.; Park, J.; Jeong, S. H.; Kang, S. W. Wafer-scale production of highly uniform two-dimensional MoS2 by metal–organic chemical vapor deposition. Nanotechnology 2017, 28, 18LT01.

    Article  Google Scholar 

  19. Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

    Article  Google Scholar 

  20. Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. N.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. Highperformance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, e1803465.

  21. Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

    Article  CAS  Google Scholar 

  22. Shang, S. L.; Lindwall, G.; Wang, Y.; Redwing, J. M.; Anderson, T.; Liu, Z. K. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: Thermodynamic insight into MoS2. Nano Lett. 2016, 16, 5742–5750.

    Article  CAS  Google Scholar 

  23. Zhu, D. C.; Shu, H. B.; Jiang, F.; Lv, D. H.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; **, C. H. Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater. Appl. 2017, 1, 8.

    Article  Google Scholar 

  24. Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.

    Article  CAS  Google Scholar 

  25. Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; **e, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

    Article  Google Scholar 

  26. Zhang, S. M.; Xu, H.; Liao, F. Y.; Sun, Y. Y.; Ba, K.; Sun, Z. Z.; Qiu, Z. J.; Xu, Z. H.; Zhu, H.; Chen, L. et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology 2019, 30, 174002.

    Article  CAS  Google Scholar 

  27. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  28. Liu, K. H.; Zhang, L. M.; Cao, T.; **, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    Article  CAS  Google Scholar 

  29. Gao, Q. G.; Zhang, Z. F.; Xu, X. L.; Song, J.; Li, X. F.; Wu, Y. Q. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 2018, 9, 4778.

    Article  Google Scholar 

  30. Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L. F.; Liang, S. J. et al. Asymmetric Schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 2018, 28, 1800657.

    Article  Google Scholar 

  31. Su, W. T.; Kumar, N.; Spencer, S. J.; Dai, N.; Roy, D. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878–3886.

    Article  CAS  Google Scholar 

  32. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  33. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  CAS  Google Scholar 

  34. Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2015, 7, 572–578.

    Article  Google Scholar 

  35. Oh, H. M.; Kim, H.; Kim, H.; Jeong, M. S. Fabrication of stacked MoS2 bilayer with weak interlayer coupling by reduced graphene oxide spacer. Sci. Rep. 2019, 9, 5900.

    Article  Google Scholar 

  36. Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.

    Article  CAS  Google Scholar 

  37. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  38. Zhou, W. D.; Yuan, C. L.; Hong, A. J.; Luo, X. F.; Lei, W. Laminated bilayer MoS2 with weak interlayer coupling. Nanoscale 2018, 10, 1145–1152.

    Article  CAS  Google Scholar 

  39. Kaushik, N.; Mackenzie, D. M. A.; Thakar, K.; Goyal, N.; Mukherjee, B.; Boggild, P.; Petersen, D. H.; Lodha, S. Reversible hysteresis inversion in MoS2 field effect transistors. npj 2D Mater. Appl. 2017, 1, 34.

    Article  Google Scholar 

  40. Min, S. W.; Lee, H. S.; Choi, H. J.; Park, M. K.; Nam, T.; Kim, H.; Ryu, S.; Im, S. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance. Nanoscale 2013, 5, 548–551.

    Article  CAS  Google Scholar 

  41. Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Mobility variations in mono- and multi-layer graphene films. Appl. Phys. Express 2009, 2, 025003.

    Article  Google Scholar 

  42. Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823–10831.

    Article  CAS  Google Scholar 

  43. Smithe, K. K. H.; Suryavanshi, S. V.; Rojo, M. M.; Tedjarati, A. D.; Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 2017, 11, 8456–8463.

    Article  CAS  Google Scholar 

  44. Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546–3552.

    Article  CAS  Google Scholar 

  45. Kim, J. H.; Kim, T. H.; Lee, H.; Park, Y. R.; Choi, W.; Lee, C. J. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv. 2016, 6, 065106.

    Article  Google Scholar 

  46. Chang, H. Y.; Zhu, W. N.; Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 2014, 104, 113504.

    Article  Google Scholar 

  47. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    Article  CAS  Google Scholar 

  48. Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093–14099.

    Article  CAS  Google Scholar 

  49. Liao, F. Y.; Deng, J. N.; Chen, X. Y.; Wang, Y.; Zhang, X. Z.; Liu, J.; Zhu, H.; Chen, L.; Sun, Q. Q.; Hu, W. D. et al. A dual-gate MoS2 photodetector based on interface coupling effect. Small 2020, 16, 1904369.

    Article  CAS  Google Scholar 

  50. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  51. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 78–80.

    Article  Google Scholar 

  52. Di Bartolomeo, A.; Genovese, L.; Foller, T.; Giubileo, F.; Luongo, G.; Croin, L.; Liang, S. J.; Ang, L. K.; Schleberger, M. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology 2017, 28, 214002.

    Article  Google Scholar 

  53. Kozbial, A.; Gong, X.; Liu, H. T.; Li, L. Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 2015, 31, 8429–8435.

    Article  CAS  Google Scholar 

  54. Wang, J. L.; Li, S. L.; Zou, X. M.; Ho, J.; Liao, L.; **ao, X. H.; Jiang, C. Z.; Hu, W. D.; Wang, J. L.; Li, J. C. Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 2015, 11, 5932–5938.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1200500 and 2018YFA0703700), in part by the National Natural Science Foundation of China (No. 61774042), the Innovation Program of Shanghai Municipal Education Commission (No. 2021-01-07-00-07-E00077), and Shanghai Municipal Science and Technology Commission (Nos. 21DZ1100900 and 20ZR1403200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nyu Chen, Ling Tong or Wenzhong Bao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Chen, H., Bian, J. et al. Stacking monolayers at will: A scalable device optimization strategy for two-dimensional semiconductors. Nano Res. 15, 6620–6627 (2022). https://doi.org/10.1007/s12274-022-4280-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4280-z

Keywords

Navigation