Log in

Lattice distortion releasing local surface strain on high-entropy alloys

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have the potential to be a paradigm-shift for rational catalyst discovery but this new type of alloy requires a completely new approach to predict the surface reactivity. In addition to the ligand effect perturbing the surface-adsorbate bond, the random configuration of elements in the surface will also induce local strain effects due to the varying radii of neighboring atoms. Accurate modelling of HEA surface reactivity requires an estimate of this effect: To what degree is the adsorption of intermediates on these lattice distorted atomic environments affected by local strain? In this study, more than 3,500 density functional theory (DFT) calculated adsorption energies of *OH and *O adsorbed on the HEAs IrPdPtRhRu and AgAuCuPdPt are statistically analyzed with respect to the lattice constants of the alloys and the surfaces of each individual binding site. It is found that the inherent distortion of the lattice structure in HEAs releases the local strain effect on the adsorption energy as the atomic environment surrounding the binding atom(s) settles into a relaxed structure. This is even observed to be true for clusters of atoms of which the sizes deviate significantly from the atomic environment in which they are embedded. This elucidates an important aspect of binding site interaction with the neighboring atoms and thus constitutes a step towards a more accurate theoretical model of estimating the reactivity of HEA surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    Article  CAS  Google Scholar 

  2. Jennings, P. C.; Lysgaard, S.; Hansen, H. A.; Vegge, T. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 24737–24745.

    Article  CAS  Google Scholar 

  3. Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: Surface strains and direct electronic effects induced by alloying elements. ACS Catal. 2016, 6, 5285–5289.

    Article  CAS  Google Scholar 

  4. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Latticestrain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  CAS  Google Scholar 

  5. Hoster, H. E.; Alves, O. B.; Koper, M. T. M. Tuning adsorption via strain and vertical ligand effects. ChemPhysChem 2010, 11, 1518–1524.

    Article  CAS  Google Scholar 

  6. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

    Article  CAS  Google Scholar 

  7. Grabow, L.; Xu, Y.; Mavrikakis, M. Lattice strain effects on CO oxidation on Pt (111). Phys. Chem. Chem. Phys. 2006, 8, 3369–3374.

    Article  CAS  Google Scholar 

  8. Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.

    Article  CAS  Google Scholar 

  9. Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

    Article  CAS  Google Scholar 

  10. Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

    Article  CAS  Google Scholar 

  11. Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

    Article  CAS  Google Scholar 

  12. Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

    Article  CAS  Google Scholar 

  13. Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

    Article  Google Scholar 

  14. Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem., Int. Ed. 2020, 59, 5844–5850.

    Article  Google Scholar 

  15. Hammer, B.; Nørskov, J. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  CAS  Google Scholar 

  16. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

    Article  Google Scholar 

  17. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  CAS  Google Scholar 

  18. Nilsson, A.; Pettersson, L. G. M.; Hammer, B.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 2005, 100, 111–114.

    Article  CAS  Google Scholar 

  19. Owen, L. R.; Jones, N. G. Lattice distortions in high-entropy alloys. J. Mater. Res. 2018, 33, 2954–2969.

    Article  CAS  Google Scholar 

  20. Song, H. Q.; Tian, F. Y.; Hu, Q. M.; Vitos, L.; Wang, Y. D.; Shen, J.; Chen, N. X. Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 2017, 1, 023404.

    Article  Google Scholar 

  21. Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

    Article  CAS  Google Scholar 

  22. Paul, A. Comments on “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys” by K. Y. Tsai, M. H. Tsai and J. W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 2017, 135, 153–157.

    Article  CAS  Google Scholar 

  23. Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Reply to comments on “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys” by K. Y. Tsai, M. H. Tsai and J. W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 2017, 135, 158–159.

    Article  CAS  Google Scholar 

  24. Divinski, S. V.; Pokoev, A. V.; Esakkiraja, N.; Paul, A. A mystery of “Sluggish Diffusion” in high-entropy alloys: The truth or a myth? Diffus. Found. 2018, 17, 69–104.

    Article  CAS  Google Scholar 

  25. Dąbrowa, J.; Zajusz, M.; Kucza, W.; Cieślak, G.; Berent, K.; Czeppe, T.; Kulik, T.; Danielewski, M. Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 2019, 783, 193–207.

    Article  Google Scholar 

  26. Ferrari, A.; Körmann, F. Surface segregation in Cr-Mn-Fe-Co-Ni high entropy alloys. Appl. Surf. Sci. 2020, 533, 147471.

    Article  CAS  Google Scholar 

  27. Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 1921, 5, 17–26.

    Article  CAS  Google Scholar 

  28. Okamoto, N. L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008.

    Article  Google Scholar 

  29. Guo, W.; Dmowski, W.; Noh, J. Y.; Rack, P.; Liaw, P. K.; Egami, T. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study. Metall. Mater. Trans. A 2013, 44, 1994–1997.

    Article  CAS  Google Scholar 

  30. Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.

    Article  Google Scholar 

  31. Zou, Y.; Maiti, S.; Steurer, W.; Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014, 65, 85–97.

    Article  CAS  Google Scholar 

  32. Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

    Article  Google Scholar 

  33. Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. P. High-Eetropy Alloys, 2nd ed.; Elsevier: Amsterdam, 2019.

    Google Scholar 

  34. Belin-Ferré, E. Surface Properties and Engineering of Complex Intermetallics; World Scientific: Singapore, 2010; pp 323–399.

    Book  Google Scholar 

  35. Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

    Article  Google Scholar 

  36. Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment —A Python library for working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.

    Google Scholar 

  37. Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.

    Article  Google Scholar 

  38. Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dulak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 2010, 22, 253202.

    CAS  Google Scholar 

  39. Alchagirov, A. B.; Perdew, J. P.; Boettger, J. C.; Albers, R. C.; Fiolhais, C. Reply to “Comment on ‘Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model’”. Phys. Rev. B 2003, 67, 026103.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Danish Ministry of Higher Education and Science (Structure of Materials in Real Time grant), VILLUM FONDEN (No. 9455) and the Danish National Research Foundation Center for High-Entropy Alloy Catalysis (No. DNRF 149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rossmeisl.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausen, C.M., Pedersen, J.K., Batchelor, T.A.A. et al. Lattice distortion releasing local surface strain on high-entropy alloys. Nano Res. 15, 4775–4779 (2022). https://doi.org/10.1007/s12274-021-3544-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3544-3

Keywords

Navigation