Log in

In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a choke point in water electrolysis, the oxygen evolution reaction (OER) suffers from the severe electrode polarization and large overpotential. Herein, the porous hierarchical hetero-(Ni3-xFex)FeN/Ni catalysts are in situ constructed for the efficient electrocatalytic OER. X-ray absorption fine structure characterizations reveal the strong Ni-Fe bimetallic interaction in (Ni3-xFex)FeN/Ni. Theoretical study indicates the heterojunction and bimetallic interaction decrease the free-energy change for the rate-limiting step of the OER and the overpotential thereof. In addition, the high conductivity and porous hierarchical morphology favor the electron transfer, electrolyte access and O2 release. Consequently, the optimized catalyst achieves a low overpotential of 223 mV at 10 mA·cm-2, a small Tafel slope of 68 mV·dec-1, and a high stability. The excellent performance of the optimized catalyst is also demonstrated by the overall water electrolysis with a low working voltage and high Faradaic efficiency. Moreover, the correlation between the structure and performance is well established by the experimental characterizations and theoretical calculations, which confirms the origin of the OER activity from the surface metal oxyhydroxide in situ generated upon applying the current. This study suggests a promising approach to the advanced OER electrocatalysts for practical applications by constructing the porous hierarchical metal-compound/metal heterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater.2012, 11, 550–557.

    CAS  Google Scholar 

  2. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

    CAS  Google Scholar 

  3. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev.2015, 44, 5148–5180.

    CAS  Google Scholar 

  4. Symes, M. D.; Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem.2013, 5, 403–409.

    CAS  Google Scholar 

  5. Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A2016, 4, 11973–12000.

    CAS  Google Scholar 

  6. Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett.2015, 6, 951–957.

    CAS  Google Scholar 

  7. Zhu, X.; **, T.; Tian, C. C.; Lu, C. B.; Liu, X. M.; Zeng, M.; Zhuang, X. D.; Yang, S. Z.; He, L.; Liu, H. L. et al. In situ coupling strategy for the preparation of FeCo alloys and CO4N hybrid for highly efficient oxygen evolution. Adv. Mater.2017, 29, 1704091.

    Google Scholar 

  8. Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; **ao, P.; Zhang, Y. H.; Hamers, R. J.; **, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater.2018, 8, 1703189.

    Google Scholar 

  9. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

    CAS  Google Scholar 

  10. **, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett.2017, 2, 1937–1938.

    Google Scholar 

  11. Wang, T. Y.; Nam, G.; **, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface s residues. Adv. Mater.2018, 30, 1800757.

    Google Scholar 

  12. Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano2018, 12, 245–253.

    CAS  Google Scholar 

  13. Zhang, J. F.; Liu, J. Y.; **, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc.2018, 140, 3876–3879.

    CAS  Google Scholar 

  14. Huang, J. Z.; Han, J. C.; Wang, R.; Zhang, Y. Y.; Wang, X. J.; Zhang, X. H.; Zhang, Z. H.; Zhang, Y. M.; Song, B.; **, S. Improving electro-catalysts for oxygen evolution using NixFe3-xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett.2018, 3, 1698–1707.

    CAS  Google Scholar 

  15. Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater.2017, 29, 1700404.

    Google Scholar 

  16. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater.2017, 27, 1606635.

    Google Scholar 

  17. Zhang, B.; **ao, C. H.; **e, S. M.; Liang, J.; Chen, X.; Tang, Y. H. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater.2016, 28, 6934–6941.

    CAS  Google Scholar 

  18. Wang, Y. Y.; **e, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. Nanoparticle-stacked porous nickel-iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces2016, 8, 18652–18657.

    CAS  Google Scholar 

  19. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries cathodes. Nano Energy2017, 40, 382–389.

    CAS  Google Scholar 

  20. Lai, H. W.; Wu, Q.; Zhao, J.; Shang, L. M.; Li, H.; Che, R. C.; Lyu, Z. Y.; **ong, J. F.; Yang, L. J.; Wang, X. X. et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci.2016, 9, 2053–2060.

    CAS  Google Scholar 

  21. **ong, J. F.; Shen, H.; Mao, J. X.; Qin, X. T.; **ao, P.; Wang, X. Z.; Wu, Q.; Hu, Z. Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst. J. Mater. Chem.2012, 22, 11927–11932.

    CAS  Google Scholar 

  22. Wu, Q.; **ong, J. F.; Hu, Z.; Wang, X. Z. Nickel-based composite nanomaterial and preparation method thereof as well as porous nickel nanomaterial and preparation method and application thereof. China Patent CN201110232023.1, November 6, 2013.

    Google Scholar 

  23. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc.2013, 135, 16977–16987.

    CAS  Google Scholar 

  24. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  25. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B2002, 66, 155125.

    Google Scholar 

  26. Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed.2019, 58, 1252–1265.

    CAS  Google Scholar 

  27. Chen, Q.; Wang, R.; Yu, M. H.; Zeng, Y. X.; Lu, F. Q.; Kuang, X. J.; Lu, X. H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta2017, 247, 666–673.

    CAS  Google Scholar 

  28. Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; **e, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc.2015, 137, 4119–4125.

    CAS  Google Scholar 

  29. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2013, 135, 12329–12337.

    CAS  Google Scholar 

  30. Liang, K.; Guo, L. M.; Marcus, K.; Zhang, S. F.; Yang, Z. Z.; Perea, D. E.; Zhou, L.; Du, Y. G.; Yang, Y. Overall water splitting with room-temperature synthesized NiFe oxyfluoride nanoporous films. ACS Catal. 2017, 7, 8406–8412.

    CAS  Google Scholar 

  31. Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun.2018, 9, 2551.

    Google Scholar 

  32. Das, D.; Nanda, K. K. One-step, integrated fabrication of Co2P nano-particles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy2016, 30, 303–311.

    CAS  Google Scholar 

  33. Miao, R.; He, J. K.; Sahoo, S.; Luo, Z.; Zhong, W.; Chen, S. Y.; Guild, C.; Jafari, T.; Dutta, B.; Cetegen, S. A. et al. Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocom-posites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal. 2017, 7, 819–832.

    CAS  Google Scholar 

  34. Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nano-particles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater.2016, 6, 1502585.

    Google Scholar 

  35. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun.2015, 6, 6616.

    CAS  Google Scholar 

  36. Tang, C.; Cheng, N. Y.; Pu, Z. H.; **ng, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed.2015, 54, 9351–9355.

    CAS  Google Scholar 

  37. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci.2016, 9, 478–483.

    CAS  Google Scholar 

  38. Yan, F.; Wang, Y.; Li, K. Y.; Zhu, C. L.; Gao, P.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities. Chem.— Eur. J. 2017, 23, 10187–10194.

    CAS  Google Scholar 

  39. Zhao, S. L.; Li, M.; Han, M.; Xu, D. D.; Yang, J.; Lin, Y.; Shi, N. E.; Lu, Y. N.; Yang, R.; Liu, B. T. et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater.2018, 28, 1706018.

    Google Scholar 

  40. Tao, L. M.; Li, M.; Wu, S. H.; Wang, Q. L.; **ao, X.; Li, Q. W.; Wang, M. K.; Fu, Y. Q.; Shen, Y. Sea coral-like NiCo2O4@(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catal. Sci. Technol. 2018, 8, 4151–4158.

    CAS  Google Scholar 

  41. Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T. Promoting electro-catalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl. Catal. B: Environ. 2019, 241, 521–527.

    CAS  Google Scholar 

  42. Yan, R. Y.; Josef, E.; Huang, H. J.; Leus, K.; Niederberger, M.; Hofmann, J. P.; Walczak, R.; Antonietti, M.; Oschatz, M. Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv. Funct. Mater.2019, 29, 1902858.

    Google Scholar 

  43. Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A2017, 5, 4335–4342.

    CAS  Google Scholar 

  44. Guo, H. P.; Ruan, B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018, 8, 9686–9696.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (Nos. 2017YFA0206500 and 2018YFA0209103), the National Natural Science Foundation of China (Nos. 21832003, 21773111, 51571110, and 21573107), and the Fundamental Research Funds for the Central Universities (No. 020514380126). The numerical calculations have been done on the computing facilities in the High Performance Computing Center (HPCC) of Nan**g University. We thank the staff of the BL14W1 beamline at Shanghai Synchrotron Radiation Facility for assistance with the X-ray absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wu or Zheng Hu.

Electronic supplementary material

Supplementary material, approximately 7.01 MB.

Supplementary material, approximately 6.01 MB.

12274_2020_2649_MOESM3_ESM.pdf

In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Mao, K., Cui, P. et al. In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 13, 328–334 (2020). https://doi.org/10.1007/s12274-020-2649-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2649-4

Keywords

Navigation