Log in

A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enhancement of supercapacitors (SCs) with high-energy density and high-power density is still a great challenge. In this paper, a facile strategy for in situ anchoring of Co3O4 particles on N doped carbon cloth (pCoNCC) is reported. Due to the interaction of the doped N and Co3O4, the electrochemical performance improves significantly, reaching 1,940.13 mF·cm−2 at 1 mA·cm−2 and energy density of 172.46 µWh·cm−2 at the power density of 400 µW·cm−2, much larger than that without N do** electrode of 28.5 mF·cm−2. An aqueous symmetric supercapacitor (ASSC) assembled by two pCoNCC electrodes achieves a maximum energy density of 447.42 µWh·cm−2 and a highest power density of 8,000 µW·cm−2. Utilizing such a high-energy storage ASSC, a digital watch and a temperature-humidity detector are powered for nearly 1 and 2 h, respectively. Moreover, the ASSC displays a superb electrochemical stability of 87.7% retention after 10,000 cycles at 40 mA·cm−2. This work would provide a new sight to enhance active materials performance and be beneficial for the future energy storage and supply systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Google Scholar 

  2. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

    CAS  Google Scholar 

  3. Huang, J.; **ao, Y. B.; Peng, Z. Y.; Xu, Y. Z.; Li, L. B.; Tan, L. C.; Yuan, K.; Chen, Y. W. Co3O4 supraparticle-based bubble nanofiber and bubble nanosheet with remarkable electrochemical performance. Adv. Sci. 2019, 6, 1900107.

    Google Scholar 

  4. Xu, J.; Wang, Q. F.; Wang, X. W.; **ang, Q. Y.; Liang, B.; Chen, D.; Shen, G. Z. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453–5462.

    CAS  Google Scholar 

  5. Cheng, C. F.; Li, X.; Liu, K. W.; Zou, F.; Tung, W. Y.; Huang, Y. F.; **a, X. H.; Wang, C. L.; Vogt, B. D.; Zhu, Y. A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode. Energy Stor. Mater. 2019, 22, 265–274.

    Google Scholar 

  6. Li, G. C.; Huang, Y. L.; Yin, Z. L.; Guo, H. J.; Liu, Y.; Cheng, H.; Wu, Y. P.; Ji, X. B.; Wang, J. X. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Stor. Mater. 2020, 24, 304–311.

    Google Scholar 

  7. Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; He, Y. C.; Yin, X. T.; Que, W. X. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 2018, 28, 1705487.

    Google Scholar 

  8. Zang, X. N.; Shen, C. W.; Kao, E.; Warren, R.; Zhang, R. P.; Teh, K. S.; Zhong, J. W.; Wei, M. S.; Li, B. X.; Chu, Y. et al. Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 2018, 30, 1704754.

    Google Scholar 

  9. Ma, J. Y.; Guo, X. T.; Yan, Y.; Xue, H. G.; Pang, H. FeOx-based materials for electrochemical energy storage. Adv. Sci. 2018, 5, 1700986.

    Google Scholar 

  10. Liu, B. B.; Hou, J. G.; Zhang, T. T.; Xu, C. X.; Liu, H. A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J. Mater. Chem. A 2019, 7, 16222–16230.

    CAS  Google Scholar 

  11. Zhang, N.; Li, Y. F.; Xu, J. Y.; Li, J. J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S. M.; Liu, Y. Y. et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano 2019, 13, 10612–10621.

    CAS  Google Scholar 

  12. Kim, S. G.; Jun, J.; Kim, Y. K.; Kim, J.; Lee, J. S.; Jang, J. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl. Mater. Interfaces 2020, 12, 20613–20622.

    CAS  Google Scholar 

  13. Liu, S. D.; Yin, Y.; Ni, D. X.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. New insight into the effect of fluorine do** and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Stor. Mater. 2019, 22, 384–396.

    Google Scholar 

  14. Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.

    CAS  Google Scholar 

  15. Li, Q.; Lu, C. X.; Chen, C. M.; **e, L. J.; Liu, Y. D.; Li, Y.; Kong, Q. Q.; Wang, H. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Stor. Mater. 2017, 8, 59–67.

    Google Scholar 

  16. Hao, J. X.; Wu, W. J.; Wang, Q.; Yan, D.; Liu, G. H.; Peng, S. L. Effect of grain size on electrochemical performance and kinetics of Co3O4 electrode materials. J. Mater. Chem. A 2020, 8, 7192–7196.

    CAS  Google Scholar 

  17. Sun, X. Z.; Lu, Y. X.; Li, T. T.; Zhao, S. S.; Gao, Z. D.; Song, Y. Y. Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. J. Mater. Chem. A 2019, 7, 372–380.

    CAS  Google Scholar 

  18. Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.

    CAS  Google Scholar 

  19. Wei, G. J.; Zhou, Z.; Zhao, X. X.; Zhang, W. Q.; An, C. H. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 23721–23730.

    CAS  Google Scholar 

  20. Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard III, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.

    Google Scholar 

  21. Liao, Q. Y.; Li, N.; **, S. X.; Yang, G W.; Wang, C. X. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9, 5310–5317.

    CAS  Google Scholar 

  22. Nethravathi, C.; Rajamathi, C. R.; Rajamathi, M.; Wang, X.; Gautam, U. K.; Golberg, D.; Bando, Y. Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: Energy storage applications. ACS Nano 2014, 8, 2755–2765.

    CAS  Google Scholar 

  23. Ding, Y. C.; Hu, L. H.; He, D. C.; Peng, Y. Q.; Niu, Y. J.; Li, Z. Q.; Zhang, X. X.; Chen, S. H. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem. Eng. J. 2020, 380, 122489.

    CAS  Google Scholar 

  24. Li, W. Z.; Zu, X. H.; Zeng, Y. X.; Zhang, L. Y.; Tang, Z. L.; Yi, G. B.; Chen, Z. H.; Lin, W. J.; Lin, X. F.; Zhou, H. K. et al. Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular coupling for high-performance flexible supercapacitors. Nano Energy 2020, 67, 104275.

    CAS  Google Scholar 

  25. Sun, D. Y.; He, L. W.; Chen, R. Q.; Lin, Z. Y.; Lin, S. S.; **ao, C. X.; Lin, B. Z. The synthesis, characterization and electrochemical performance of hollow sandwich microtubules composed of ultrathin Co3O4 nanosheets and porous carbon using a bio-template. J. Mater. Chem. A 2018, 6, 18987–18993.

    CAS  Google Scholar 

  26. Vilian, A. T. E.; Dinesh, B.; Rethinasabapathy, M.; Hwang, S. K.; **, C. S.; Huh, Y. S.; Han, Y. K. Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 2018, 6, 14367–14379.

    CAS  Google Scholar 

  27. **e, L.; Wang, H. Y.; Chen, C. H.; Mao, S. J.; Chen, Y. Q.; Li, H. R.; Wang, Y. Cooperative assembly of asymmetric carbonaceous bivalvelike superstructures from multiple building blocks. Research 2018, 2018, 5807980.

    Google Scholar 

  28. Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.

    CAS  Google Scholar 

  29. Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

    Google Scholar 

  30. Horng, Y. Y.; Lu, Y. C.; Hsu, Y. K.; Chen, C. C.; Chen, L. C.; Chen, K. H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 2010, 195, 4418–4422.

    CAS  Google Scholar 

  31. Xu, W. N.; Lu, J. L.; Huo, W. C.; Li, J. E.; Wang, X.; Zhang, C. L.; Gu, X.; Hu, C. G. Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 2018, 10, 14304–14313.

    CAS  Google Scholar 

  32. Dai, S. G.; Liu, J. L.; Wang, C. S.; Wang, X.; **, Y.; Wei, D. P.; Hu, C. G. Hierarchical porous nanostructures of manganese(III) oxyhydroxide for all-solid-state flexible supercapacitors. Energy Technol. 2016, 4, 1450–1454.

    CAS  Google Scholar 

  33. Li, J. E.; Luo, S.; Wang, C. C.; Tang, Q.; Wang, Y. W.; Han, X. Y.; Ran, H.; Wan, J.; Gu, X.; Wang, X. et al. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Res. 2020, 13, 759–767.

    CAS  Google Scholar 

  34. Lu, J. L.; Xu, W. N.; Li, S. Q.; Liu, W. L.; Javed, M. S.; Liu, G. L.; Hu, C. G. Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. J. Mater. Sci. 2018, 53, 739–748.

    CAS  Google Scholar 

  35. Wang, H. Y.; Chen, J. Y.; Fan, R. X.; Wang, Y. A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustain. Energy Fuels 2018, 2, 2727–2732.

    CAS  Google Scholar 

  36. Wang, H. Y.; Xu, C. M.; Chen, Y. Q.; Wang, Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Stor. Mater. 2017, 8, 127–133.

    Google Scholar 

  37. Wang, H. Y.; Deng, J.; Xu, C. M.; Chen, Y. Q.; Xu, F.; Wang, J.; Wang, Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Stor. Mater. 2017, 7, 216–221.

    Google Scholar 

  38. Wang, M. J.; Song, X. F.; Yang, Q.; Hua, H.; Dai, S. G.; Hu, C. G.; Wei, D. P. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation. J. Power Sources 2015, 273, 624–630.

    CAS  Google Scholar 

  39. Li, Y. R.; Wang, X.; Yang, Q.; Javed, M. S.; Liu, Q. P.; Xu, W. N.; Hu, C. G.; Wei, D. P. Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim. Acta 2017, 234, 63–70.

    CAS  Google Scholar 

  40. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    CAS  Google Scholar 

  41. Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702.

    CAS  Google Scholar 

  42. Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288–6296.

    CAS  Google Scholar 

  43. Sun, G L.; Ma, L. Y.; Ran, J. B.; Shen, X. Y.; Tong, H. Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: Implications for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9542–9554.

    CAS  Google Scholar 

  44. Qorbani, M.; Chou, T. C.; Lee, Y. H.; Samireddi, S.; Naseri, N.; Ganguly, A.; Esfandiar, A.; Wang, C. H.; Chen, L. C.; Chen, K. H. et al. Multi-porous Co3O4 nanoflakes@sponge-like few-layer partially reduced graphene oxide hybrids: Towards highly stable asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 12569–12577.

    CAS  Google Scholar 

  45. Xu, K. B.; Ma, S.; Shen, Y. N.; Ren, Q. L.; Yang, J. M.; Chen, X.; Hu, J. Q. CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem. Eng. J. 2019, 369, 363–369.

    CAS  Google Scholar 

  46. Lee, G.; Jang, J. High-performance hybrid supercapacitors based on novel Co3O4/Co(OH)2 hybrids synthesized with various-sized metal-organic framework templates. J. Power Sources 2019, 423, 115–124.

    CAS  Google Scholar 

  47. Chen, M. Y.; Li, W. H.; Ma, W. H.; Qi, P. C.; Yang, W. J.; Wang, S. Y.; Lu, Y.; Tang, Y. W. Remarkable enhancement of the electrochemical properties of Co3O4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell. J. Mater. Chem. A 2019, 7, 1678–1686.

    CAS  Google Scholar 

  48. Huang, Y. P.; Cui, F.; Bao, J.; Zhao, Y.; Lian, J. B.; Liu, T. X.; Li, H. M. MnCo2S4/FeCo2S4 “lollipop” arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. J. Mater. Chem. A 2019, 7, 20778–20789.

    CAS  Google Scholar 

  49. Lv, H. H.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Yu, T. T.; Lv, M. L.; Wang, J. W.; Zhai, Y.; Hu, J. Q. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 14287–14298.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51772036 and 51572040) and the Fundamental Research Funds for the Central Universities (Nos. 2019CDXZWL001 and 2020CDCGJ005). We would like to thank Analytical and Testing Center of Chongqing University for ESEM, BET, XPS, EDS and XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Wei or Chenguo Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Li, J., Wan, J. et al. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Res. 14, 2410–2417 (2021). https://doi.org/10.1007/s12274-019-3242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-3242-6

Keywords

Navigation