Log in

Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Numerous technological advances have been made in the depolymerization and fermentation of lignocellulosic biomass. Nevertheless, economic feasibility is still a major concern for the bioconversion of lignocellulose into value-added products. Acetate—the most abundant carbon source after the sugars in cellulosic hydrolysates—has been considered a fermentation inhibitor, but it can also be a good substrate in industrial biotechnological processes. Co-consumption of acetate and cellulosic sugars by yeasts will improve the economic feasibility of any bioconversion processes using cellulosic hydrolysates. This study investigates state-of-the-art technologies for the utilization of the hemicellulose fractions of lignocellulosic biomass, rich in acetate and xylose. Furthermore, the potentials of acetate- and xylose-rich hydrolysates will be highlighted in diversifying the product profiles for lignocellulosic bioprocesses from bioethanol to drop-in fuels and other value-added chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padella, M., A. O’Connell, and M. Prussi (2019) What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl. Sci. (Basel) 9: 4523.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., X. Liang, M. J. Biddy, A. Allee, H. Cai, T. Foust, M. E. Himmel, M. S. Laser, M. Wang, and C. E. Wyman (2017) Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45: 202–211.

    Article  CAS  Google Scholar 

  3. Bomgardner, M. M. (2019) POET-DSM to Pause Cellulosic Ethanol Production. American Chemical Society, Washington, DC, USA.

    Google Scholar 

  4. Lynd, L. R. (2017) The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35: 912–915.

    Article  CAS  Google Scholar 

  5. Rosales-Calderon, O. and V. Arantes (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12: 240.

    Article  Google Scholar 

  6. Liu, C.-G., Y. **ao, X.-X. **a, X.-Q. Zhao, L. Peng, P. Srinophakun, and F.-W. Bai (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37: 491–504.

    Article  CAS  Google Scholar 

  7. Baptista, S. L., C. E. Costa, J. T. Cunha, P. O. Soares, and L. Domingues (2021) Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol. Adv. 47: 107697.

    Article  CAS  Google Scholar 

  8. Supaporn, P. and S. H. Yeom (2022) Optimized sugar extraction and bioethanol production from lipid-extracted sewage sludge. Biotechnol. Bioprocess Eng. 27: 119–125.

    Article  CAS  Google Scholar 

  9. Jiao, H., X. Song, C. Lai, H. Fang, Y. Song, and J. Zhu (2021) Progress in preparation of cellulase from lignocellulose using fungi. Biotechnol. Bioprocess Eng. 26: 871–886.

    Article  CAS  Google Scholar 

  10. Biswal, A. K., M. A. Atmodjo, M. Li, H. L. Baxter, C. G. Yoo, Y Pu, Y.-C. Lee, M. Mazarei, I. M. Black, J.-Y. Zhang, H. Ramanna, A. L. Bray, Z. R. King, P. R. LaFayette, S. Pattathil, B. S. Donohoe, S. S. Mohanty, D. Ryno, K. Yee, O. A. Thompson, M. Rodriguez Jr., A. Dumitrache, J. Natzke, K. Winkeler, C. Collins, X. Yang, L. Tan, R. W. Sykes, E. L. Gjersing, A. Ziebell, G. B. Turner, S. R. Decker, M. G. Hahn, B. H. Davison, M. K. Udvardi, J. R. Mielenz, M. F. Davis, R. S. Nelson, W. A. Parrott, A. J. Ragauskas, C. Neal Stewart Jr., and D. Mohnen (2018) Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat. Biotechnol. 36: 249–257.

    Article  CAS  Google Scholar 

  11. Ko, J. K., J. H. Lee, J. H. Jung, and S.-M. Lee (2020) Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production. Renew. Sustain. Energy Rev. 134: 110390.

    Article  CAS  Google Scholar 

  12. **ali, S. V., M. D. Smith, S.-H. Liu, T. B. Rawal, Y. Pu, R. Shah, B. R. Evans, V. S. Urban, B. H. Davison, C. M. Cai, A. J. Ragauskas, H. M. O’Neill, J. C. Smith, and L. Petridis (2020) Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proc. Natl. Acad. Sci. U. S. A. 117: 16776–16781.

    Article  CAS  Google Scholar 

  13. Kim, K. H., A. Eudes, K. Jeong, C. G. Yoo, C. S. Kim, and A. Ragauskas (2019) Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proc. Natl. Acad. Sci. U. S. A. 116: 13816–13824.

    Article  CAS  Google Scholar 

  14. Mankar, A. R., A. Pandey, A. Modak, and K. K. Pant (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 334: 125235.

    Article  CAS  Google Scholar 

  15. Xu, C., M. Asraful Alam, Z. Wang, H. Chen, J. Zhang, S. Huang, W. Zhuang, and J. Xu (2021) Mechanisms of bio-additives on boosting enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 337: 125341.

    Article  CAS  Google Scholar 

  16. Anandharaj, M., Y.-J. Lin, R. P. Rani, E. K. Nadendla, M.-C. Ho, C.-C. Huang, J.-F. Cheng, J.-J. Chang, and W.-H. Li (2020) Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc. Natl. Acad. Sci. U. S. A. 117: 2385–2394.

    Article  CAS  Google Scholar 

  17. Kim, S.-K. and J.-H. Auh (2021) Evaluating the engineered Saccharomyces cerevisiae with high spermidine contents for increased tolerance to lactic, succinic, and malic acids and increased xylose fermentation. Biotechnol. Bioprocess Eng. 26: 47–54.

    Article  CAS  Google Scholar 

  18. Henningsen, B. M., S. Hon, S. F. Covalla, C. Sonu, D. A. Argyros, T. F. Barrett, E. Wiswall, A. C. Froehlich, and R. M. Zelle (2015) Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl. Environ. Microbiol. 81: 8108–8117.

    Article  CAS  Google Scholar 

  19. Papapetridis, I., M. van Dijk, A. J. van Maris, and J. T. Pronk (2017) Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae. Biotechnol. Biofuels 10: 107.

    Article  Google Scholar 

  20. Wei, N., J. Quarterman, S. R. Kim, J. H. Cate, and Y.-S. ** (2013) Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 4: 2580.

    Article  Google Scholar 

  21. Sun, L., J. W. Lee, S. Yook, S. Lane, Z. Sun, S. R. Kim, and Y.-S. ** (2021) Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 12: 4975.

    Article  CAS  Google Scholar 

  22. Kiefer, D., M. Merkel, L. Lilge, M. Henkel, and R. Hausmann (2021) From acetate to bio-based products: underexploited potential for industrial biotechnology. Trends Biotechnol. 39: 397–411.

    Article  CAS  Google Scholar 

  23. Huang, B., H. Yang, G. Fang, X. Zhang, H. Wu, Z. Li, and Q. Ye (2018) Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnol. Bioeng. 115: 943–954.

    Article  CAS  Google Scholar 

  24. Xu, J., N. Liu, K. Qiao, S. Vogg, and G. Stephanopoulos (2017) Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proc. Natl. Acad. Sci. U. S. A. 114: E5308–E5316.

    Article  CAS  Google Scholar 

  25. Demeke, M. M., H. Dietz, Y. Li, M. R. Foulquié-Moreno, S. Mutturi, S. Deprez, T. Den Abt, B. M. Bonini, G. Liden, F. Dumortier, A. Verplaetse, E. Boles, and J. M. Thevelein (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6: 89.

    Article  CAS  Google Scholar 

  26. Ko, J. K., Y. Um, H. M. Woo, K. H. Kim, and S.-M. Lee (2016) Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour. Technol. 209: 290–296.

    Article  CAS  Google Scholar 

  27. Kuglarz, M., M. Alvarado-Morales, K. Dąbkowska, and I. Angelidaki (2018) Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 265: 191–199.

    Article  CAS  Google Scholar 

  28. Sritrakul, N., S. Nitisinprasert, and S. Keawsompong (2017) Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric. Nat. Resour. (Bangk.) 51: 512–519.

    Google Scholar 

  29. Costa, C. E., A. Romaní, J. T. Cunha, B. Johansson, and L. Domingues (2017) Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: importance of yeast chassis linked to process conditions. Bioresour. Technol. 227: 24–34.

    Article  CAS  Google Scholar 

  30. Park, H., S. U. Park, B.-K. Jang, J. J. Lee, and Y. S. Chung (2021) Germplasm evaluation of Kenaf (Hibiscus cannabinus) for alternative biomass for cellulosic ethanol production. Glob. Change Biol. Bioenergy 13: 201–210.

    Article  CAS  Google Scholar 

  31. Gunnarsson, I. B., M. Kuglarz, D. Karakashev, and I. Angelidaki (2015) Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresour. Technol. 182: 58–66.

    Article  CAS  Google Scholar 

  32. Nguyen, T. Y., C. M. Cai, R. Kumar, and C. E. Wyman (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc. Natl. Acad. Sci. U. S. A. 114: 11673–11678.

    Article  CAS  Google Scholar 

  33. da Silva, A. S., R. P. Espinheira, R. S. S. Teixeira, M. F. de Souza, V. Ferreira-Leitão, and E. P. S. Bon (2020) Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol. Biofuels 13: 58.

    Article  Google Scholar 

  34. Zhao, J., Y. Xu, W. Wang, J. Griffin, and D. Wang (2020) High ethanol concentration (77 g/L) of industrial hemp biomass achieved through optimizing the relationship between ethanol yield/concentration and solid loading. ACS Omega 5: 21913–21921.

    Article  CAS  Google Scholar 

  35. Weiss, N. D., C. Felby, and L. G. Thygesen (2019) Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications. Biotechnol. Biofuels 12: 3.

    Article  Google Scholar 

  36. Park, H., D. Jeong, M. Shin, S. Kwak, E. J. Oh, J. K. Ko, and S. R. Kim (2020) Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl. Microbiol. Biotechnol. 104: 3245–3252.

    Article  CAS  Google Scholar 

  37. Kogje, A. and A. Ghosalkar (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6: 127.

    Article  Google Scholar 

  38. Dalli, S. S., S. S. da Silva, B. K. Uprety, and S. K. Rakshit (2017) Enhanced production of xylitol from poplar wood hydrolysates through a sustainable process using immobilized new strain Candida tropicalis UFMG BX 12-a. Appl. Biochem. Biotechnol. 182: 1053–1064.

    Article  CAS  Google Scholar 

  39. Kundu, C., L. T. P. Trinh, H.-J. Lee, and J.-W. Lee (2015) Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel (Lond.) 161: 129–136.

    Article  CAS  Google Scholar 

  40. Wischral, D., J. M. Arias, and N. Pereira Jr. (2019) Statistical optimization of lactic acid production by Lactobacillus pentosus using hemicellulose hydrolysate from sugarcane bagasse. Ingeniería 29: 40–50.

    Google Scholar 

  41. Silva, D. D. V., K. J. Dussán, A. Idarraga, L. Grangeiro, S. S. Silva, C. A. Cardona, J. Quintero, and M. G. A. Felipe (2020) Production and purification of xylitol by Scheffersomyces amazonenses via sugarcane hemicellulosic hydrolysate. Biofuel. Bioprod. Biorefin. 14: 344–356.

    Article  CAS  Google Scholar 

  42. Alves de Oliveira, R., R. Schneider, C. E. Vaz Rossell, R. Maciel Filho, and J. Venus (2019) Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour. Technol. Rep. 6: 26–31.

    Article  Google Scholar 

  43. **, Y., H.-Z. Ling, G. Song, and J.-P. Ge (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem. Eng. J. 75: 86–91.

    Article  CAS  Google Scholar 

  44. Dai, L., W. Jiang, X. Zhou, and Y. Xu (2020) Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Bioresour. Technol. 316: 123944.

    Article  CAS  Google Scholar 

  45. López-Linares, J. C., I. Romero, C. Cara, E. Castro, and S. I. Mussatto (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour. Technol. 247: 736–743.

    Article  Google Scholar 

  46. Kuenz, A., M. Jäger, H. Niemi, M. Kallioinen, M. Mänttäri, and U. Prüße (2020) Conversion of xylose from birch hemicellulose hydrolysate to 2,3-butanediol with Bacillus vallismortis. Fermentation (Basel) 6: 86.

    Article  CAS  Google Scholar 

  47. Lopes, H. J. S., N. Bonturi, and E. A. Miranda (2020) Rhodotorula toruloides single cell oil production using Eucalyptus urograndis hemicellulose hydrolysate as a carbon source. Energies (Basel) 13: 795.

    Article  CAS  Google Scholar 

  48. Wolfe, A. J. (2005) The acetate switch. Microbiol. Mol. Biol. Rev. 69: 12–50.

    Article  CAS  Google Scholar 

  49. Casal, M., H. Cardoso, and C. Leao (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology (Reading) 142: 1385–1390.

    Article  CAS  Google Scholar 

  50. Paiva, S., F. Devaux, S. Barbosa, C. Jacq, and M. Casal (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21: 201–210.

    Article  CAS  Google Scholar 

  51. Casal, M., S. Paiva, R. P. Andrade, C. Gancedo, and C. Leão (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J. Bacteriol. 181: 2620–2623.

    Article  CAS  Google Scholar 

  52. dos Santos, M. M., A. K. Gombert, B. Christensen, L. Olsson, and J. Nielsen (2003) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates. Eukaryot. Cell 2: 599–608.

    Article  Google Scholar 

  53. Burtner, C. R., C. J. Murakami, B. K. Kennedy, and M. Kaeberlein (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8: 1256–1270.

    Article  CAS  Google Scholar 

  54. Giannattasio, S., N. Guaragnella, M. Zdralević, and E. Marra (2013) Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front. Microbiol. 4: 33.

  55. de Smidt, O., J. C. du Preez, and J. Albertyn (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 8: 967–978.

    Article  CAS  Google Scholar 

  56. Zhang, G. C. I. I. Kong, N. Wei, D. Peng, T. L. Turner, B. H. Sung, J. H. Sohn, and Y. S. ** (2016) Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol. Bioeng. 113: 2587–2596.

    Article  CAS  Google Scholar 

  57. Papapetridis, I., M. van Dijk, A. P. Dobbe, B. Metz, J. T. Pronk, and A. J. van Maris (2016) Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb. Cell Fact. 15: 67.

    Article  Google Scholar 

  58. Stratford, M., H. Steels, G. Nebe-von-Caron, M. Novodvorska, K. Hayer, and D. B. Archer (2013) Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int. J. Food Microbiol. 166: 126–134.

    Article  CAS  Google Scholar 

  59. Sousa, M. J., L. Miranda, M. Côrte-Real, and C. Leão (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62: 3152–3157.

    Article  CAS  Google Scholar 

  60. Rodrigues, F., M. J. Sousa, P. Ludovico, H. Santos, M. Côrte-Real, and C. Leão (2012) The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii. PLoS One 7: e52402.

    Article  CAS  Google Scholar 

  61. Rodrigues, F., A. M. Zeeman, H. Cardoso, M. J. Sousa, H. Y. Steensma, M. Côrte-Real, and C. Leão (2004) Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii. Yeast 21: 325–331.

    Article  CAS  Google Scholar 

  62. Guerreiro, J. F., N. P. Mira, and I. Sá-Correia (2012) Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 12: 2303–2318.

    Article  CAS  Google Scholar 

  63. Palma, M., J. F. Guerreiro, and I. Sá-Correia (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front. Microbiol. 9: 274.

    Article  Google Scholar 

  64. Lindberg, L., A. X. Santos, H. Riezman, L. Olsson, and M. Bettiga (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 8: e73936.

    Article  CAS  Google Scholar 

  65. Kuanyshev, N., C. V. Rao, B. Dien, and Y.-S. ** (2021) Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engineering host: lactic acid production by engineered Zygosaccharomyces bailii. Biotechnol. Bioeng. 118: 372–382.

    Article  CAS  Google Scholar 

  66. Y Seong, Y. J., H. J. Lee, J. E. Lee, S. Kim, D. Y. Lee, K. H. Kim, and Y. C. Park (2017) Physiological and metabolomic analysis of Issatchenkia orientalis MTY1 with multiple tolerance for cellulosic bioethanol production. Biotechnol. J. 12: 1700110.

    Article  Google Scholar 

  67. Li, Y., Z. Wu, R. Li, Y. Miao, P. Weng, and L. Wang (2020) Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis. J. Food Biochem. 44: e13203.

    CAS  Google Scholar 

  68. Yuangsaard, N., W. Yongmanitchai, M. Yamada, and S. Limtong (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie Van Leeuwenhoek 103: 577–588.

    Article  CAS  Google Scholar 

  69. Chamnipa, N., S. Thanonkeo, P. Klanrit, and P. Thanonkeo (2018) The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz. J. Microbiol. 49: 378–391.

    Article  Google Scholar 

  70. Beopoulos, A., J. Cescut, R. Haddouche, J.-L. Uribelarrea, C. Molina-Jouve, and J.-M. Nicaud (2009) Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48: 375–387.

    Article  CAS  Google Scholar 

  71. Liu, H., M. Marsafari, F. Wang, L. Deng, and P. Xu (2019) Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab. Eng. 56: 60–68.

    Article  CAS  Google Scholar 

  72. Spagnuolo, M., M. Shabbir Hussain, L. Gambill, and M. Blenner (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front. Microbiol. 9: 1077.

    Article  Google Scholar 

  73. Sitepu, I. R., L. A. Garay, R. Sestric, D. Levin, D. E. Block, J. B. German, and K. L. Boundy-Mills (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol. Adv. 32: 1336–1360.

    Article  CAS  Google Scholar 

  74. Hu, P., S. Chakraborty, A. Kumar, B. Woolston, H. Liu, D. Emerson, and G. Stephanopoulos (2016) Integrated bioprocess for conversion of gaseous substrates to liquids. Proc. Natl. Acad. Sci. U. S. A. 113: 3773–3778.

    Article  CAS  Google Scholar 

  75. Yaegashi, J., J. Kirby, M. Ito, J. Sun, T. Dutta, M. Mirsiaghi, E. R. Sundstrom, A. Rodriguez, E. Baidoo, D. Tanjore, T. Pray, K. Sale, S. Singh, J. D. Keasling, B. A. Simmons, S. W. Singer, J. K. Magnuson, A. P. Arkin, J. M. Skerker, and J. M. Gladden (2017) Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels 10: 241.

    Article  Google Scholar 

  76. Zhuang, X., O. Kilian, E. Monroe, M. Ito, M. B. Tran-Gymfi, F. Liu, R. W. Davis, M. Mirsiaghi, E. Sundstrom, T. Pray, J. M. Skerker, A. George, and J. M. Gladden (2019) Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb. Cell Fact. 18: 54.

    Article  Google Scholar 

  77. Park, Y.-K., J.-M. Nicaud, and R. Ledesma-Amaro (2018) The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotechnol. 36: 304–317.

    Article  CAS  Google Scholar 

  78. Zhao, X., F. Peng, W. Du, C. Liu, and D. Liu (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst. Eng. 35: 993–1004.

    Article  CAS  Google Scholar 

  79. Huang, X.-F., J.-N. Liu, L.-J. Lu, K.-M. Peng, G.-X. Yang, and J. Liu (2016) Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Bioresour. Technol. 206: 141–149.

    Article  CAS  Google Scholar 

  80. Díaz, T., S. Fillet, S. Campoy, R. Vázquez, J. Viña, J. Murillo, and J. L. Adrio (2018) Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Appl. Microbiol. Biotechnol. 102: 3287–3300.

    Article  Google Scholar 

  81. Liu, J., X. Huang, R. Chen, M. Yuan, and J. Liu (2017) Efficient bioconversion of high-content volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509. Bioresour. Technol. 239: 394–401.

    Article  CAS  Google Scholar 

  82. Zhang, W., J. Wu, Y.-J. Zhou, H.-J. Liu, and J.-A. Zhang (2019) Enhanced lipid production by Rhodotorula glutinis CGMCC 2.703 using a two-stage pH regulation strategy with acetate as the substrate. Energy Sci. Eng. 7: 2077–2085.

    Article  Google Scholar 

  83. Gong, Z., W. Zhou, H. Shen, Z. Yang, G. Wang, Z. Zuo, Y. Hou, and Z. K. Zhao (2016) Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresour. Technol. 207: 102–108.

    Article  CAS  Google Scholar 

  84. Qian, X., O. Gorte, L. Chen, W. Zhang, W. Dong, J. Ma, F. **n, M. Jiang, and K. Ochsenreither (2020) Continuous self-provided fermentation for microbial lipids production from acetate by using oleaginous yeasts Cryptococcus podzolicus and Trichosporon porosum. Renew. Energy 146: 737–743.

    Article  CAS  Google Scholar 

  85. Kwak, S., S. R. Kim, H. Xu, G.-C. Zhang, S. Lane, H. Kim, and Y.-S. ** (2017) Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 114: 2581–2591.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01577003)” Rural Development Administration, Republic of Korea. This work was also supported by Korea Environmental Industry and Technology Institute (KEITI) grant funded by the Ministry of Environment of Korea. YGL and YSJ was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Su ** or Soo Rin Kim.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies using human participants or animals performed by any of the authors.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YG., Ju, Y., Sun, L. et al. Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. Biotechnol Bioproc E 27, 890–899 (2022). https://doi.org/10.1007/s12257-022-0217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0217-3

Keywords

Navigation