Log in

Combining Genome Shuffling with Streptomycin Resistance to Improve Poly-γ-L-diaminobutanoic Acid Production in Bacillus pumilus

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A breeding approach combining genome shuffling with streptomycin resistance was developed in this research to improve the poly-γ-L-diaminobutanoic acid (γ-PAB) production in Bacillus pumilus LS-1. By this unique strategy, recombinants from the third round of genome shuffling could tolerate 18 µg/L of streptomycin and exhibited higher γ-PAB yield as 152.2 mg/L in shake-flask fermentation, 3-fold over the parent. In batch fermentation, B. pumilus GS3-9 could produce γ-PAB as high as 1284.7 mg/L in two days, 2.4-fold higher than the control, which was the highest productivity ever reported. In addition, the optimal pH in B. pumilus for γ-PAB synthesis was changed after atmospheric and room temperature plasma (ARTP) mutagenesis and protoplast fusion, because lower pH environment is favorable for accumulation of intracellular ATP. Some key enzymes in GS3-9 showed higher activities than those in parent, suggesting a greater flux to TCA circle and DAP pathway, which was a reason for enhanced γ-PAB production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunioka, M. (1997) Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47: 469–475.

    Article  CAS  Google Scholar 

  2. Yamanaka, K., C. Maruyama, H. Takagi, and Y. Hamano (2008) Epsilon-poly-l-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat. Chem. Biol. 4: 766–772.

    Article  CAS  Google Scholar 

  3. Obst, M. and A. Steinbüchel (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules. 5: 1166–1176.

    Article  CAS  Google Scholar 

  4. Hamano, Y., T. Arai, M. Ashiuchi, and K. Kino (2013) NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 30: 1087–1097.

    Article  CAS  Google Scholar 

  5. Hiraki, J., T. Ichikawa, S. Ninomiya, H. Seki, K. Uohama, H. Seki, S. Kimura, Y. Yanagimoto, and J. W. Barnett Jr (2003) Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regul. Toxicol. Pharm. 37: 328–340.

    Article  CAS  Google Scholar 

  6. **a, J., H. Xu, X. Feng, Z. Xu, and B. Chi (2013) Poly(L-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(ε-l-lysine) by Streptomyces albulus PD-1. Appl. Microbiol. Biotechnol. 97: 7597–7605.

    Article  CAS  Google Scholar 

  7. Takehara, M., M. Saimura, H. Inaba, and H. Hirohara (2008) Poly(γ-L-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(ε-L-lysine) by two strains of Streptomyces celluloflavus. FEMS. Microbiol. Lett. 286: 110–117.

    Article  CAS  Google Scholar 

  8. Xu, Z., Z. Sun, S. Li, Z. Xu, C. Cao, Z. Xu, X. Feng, and H. Xu (2015) Systematic unravelling of the biosynthesis of poly(L-diaminopropionic acid) in Streptomyces albulus PD-1. Sci. Rep. 5: 17400.

    Article  CAS  Google Scholar 

  9. Zhang, Y. X., K. Perry, V. A. Vinci, K. Powell, W. P. C. Stemmer, and S. B. del Cardayre (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 415: 644–646.

    Article  CAS  Google Scholar 

  10. Kim, J. Y., H. W. Yoo, P. G. Lee, S. G. Lee, J. H. Seo, and B. G. Kim (2019) In vivo protein evolution, next generation protein engineering strategy: from random approach to target-specific approach. Biotechnol. Bioprocess Eng. 24: 85–94.

    Article  CAS  Google Scholar 

  11. Patnaik, R., S. Louie, V. Gavrilovic, K. Perry, W. P. C. Stemmer, C. M. Ryan, and S. del Cardayré (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20: 707–712.

    Article  CAS  Google Scholar 

  12. Xu, B., Z. H. **, H. Wang, Q. **, X. **, and P. Cen (2008) Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl. Microbiol. Biotechnol. 80: 261–267.

    Article  CAS  Google Scholar 

  13. Shi, D. J., C. L. Wang, and K. M. Wang (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36: 139–147.

    Article  CAS  Google Scholar 

  14. Zheng, D. Q., X. C. Wu, P. M. Wang, X. Q. Chi, X. L. Tao, P. Li, X. H. Jiang, and Y. H. Zhao (2011) Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 38: 415–422.

    Article  CAS  Google Scholar 

  15. Li, S., F. Li, X. S. Chen, L. Wang, J. Xu, L. Tang, and Z. G. Mao (2012) Genome shuffling enhanced e-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl. Biochem. Biotechnol. 166: 414–423.

    Article  CAS  Google Scholar 

  16. Wang, L., X. Chen, G. Wu, X. Zeng, X. Ren, S. Li, L. Tang, and Z. Mao (2016) Genome shuffling and gentamicin-resistance to improve e-poly-L-lysine productivity of Streptomyces albulus W-156. Appl. Biochem. Biotechnol. 180: 1601–1617.

    Article  CAS  Google Scholar 

  17. Hu, H. and K. Ochi (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl. Environ. Microbiol. 67: 1885–1892.

    Article  CAS  Google Scholar 

  18. Ochi, K., S. Okamoto, Y. Tozawa, T. Inaoka, T. Hosaka, J. Xu, and K. Kurosawa (2004) Ribosome engineering and secondary metabolite production. Adv. Appl. Microbiol. 56: 155–184.

    Article  CAS  Google Scholar 

  19. Wang, L., S. Li, J. Zhao, Y. Liu, X. Chen, L. Tang, and Z. Mao (2019) Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Microbiologyopen. 8: e00728.

    Article  Google Scholar 

  20. Banerjee, S., G. Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713–733.

    Article  CAS  Google Scholar 

  21. Zeng, X., X. S. Chen, X. D. Ren, Q. R. Liu, L. Wang, Q. X. Sun, L. Tang, and Z. G. Mao (2014) Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of epsilon-poly-L-lysine productivity. Appl. Biochem. Biotechnol. 173: 2211–2224.

    Article  CAS  Google Scholar 

  22. Teichgraber, P., D. Biesold, and Z. D. Pigareva (1973) Subcellular localization of hexokinase in the rat cortex. Neurosci. Behav. Physiol. 6: 218–227.

    Article  CAS  Google Scholar 

  23. Morris, C. N., S. Ainsworth, and J. Kinderlerer (1986) The regulatory properties of yeast pyruvate kinase. Effect of fructose 1,6-bisphosphate. Biochem. J. 234: 691–698.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  25. Oda, Y., S. Nakamura, I. Oki, T. Kato, and H. Shinagawa (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat. Res. 147: 219–229.

    Article  CAS  Google Scholar 

  26. Wang, L. Y., Z. L. Huang, G. Li, H. X. Zhao X. H. **ng, W. T. Sun, H. P. Li, Z. X. Gou, and C. Y. Bao (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 108: 851–858.

    Article  CAS  Google Scholar 

  27. Xu, F., J. Wang, S. Chen, W. Qin, Z. Yu, H. Zhao, X. **ng, and H. Li (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Appl. Biochem. Microbiol. 47: 53–58.

    Article  CAS  Google Scholar 

  28. Kahar, P., T. Iwata, J. Hiraki, E. Y. Park, and M. Okabe (2001) Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190–194.

    Article  CAS  Google Scholar 

  29. Kito, M., R. Takimoto, Y. Onji, T. Yoshida, and T. Nagasawa (2002) Purification and characterization of an ε-poly-L-lysine-degrading enzyme from the e-poly-L-lysine-tolerant Chryseobacterium sp. OJ7. J. Biosci. Bioeng. 96: 92–104.

    Article  Google Scholar 

  30. Helena, B., H. G. Nimmo, I. S. Hunter, and J. R. Coggins (1993) Phosphoenolpyruvate carboxylase from Streptomyces coelicolor A3(2): purification of the enzyme, cloning of the ppc gene and over-expression of the protein in a streptomycete. Biochem. J. 293: 131–136.

    Article  Google Scholar 

  31. Hosoya, Y., S. Okamoto, H. Muramatsu, and K. Ochi (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob. Agents Chemother. 42: 2041–2047.

    Article  CAS  Google Scholar 

  32. Wang, G., T. Hosaka, and K. Ochi (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbol. 74: 2834–2840.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Natural Science Foundation (ZR2019BC044), and open project from the Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University (KLIB-KF202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, L., Wang, N. et al. Combining Genome Shuffling with Streptomycin Resistance to Improve Poly-γ-L-diaminobutanoic Acid Production in Bacillus pumilus. Biotechnol Bioproc E 26, 630–640 (2021). https://doi.org/10.1007/s12257-020-0320-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0320-2

Keywords

Navigation