Log in

Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid-state fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biosurfactants are amphiphilic compounds produced by several microorganisms that reduce the surface tension. Low toxicity, optimal activity in extreme conditions, biodegradability and production from several wastes are main advantages of biosurfactants as compared to synthetic surfactants. Production of biosurfactant by a white rot fungus Pleurotus djamor on sunflower seed shell in solid-state fermentation was determined by emulsification indexes, oil spreading activity and surface tension (28.82 ± 0.3mN/m) measurement. The critical micelle concentration was detected as 0.964 ± 0.09 mg/mL. Also, the chemical and physicochemical properties of the biosurfactant produced were investigated. Considering the results of the chemical contents analysis, HPLC, FT-IR and 1H-NMR, it can be concluded that the produced biosurfactant has a complex structure. Besides, resistance of its activity to environmental factors such as temperature, pH and salt concentration, as well as its thermal stability, were investigated. Additionally, the produced biosurfactant formed stabile emulsions with different hydrocarbons. Lastly, the performance of removing waste frying oil from contaminated sand of produced biosurfactant was detected as 76.57 ± 6%. Owing to its high emulsification capacity, low surface tension and critical micelle concentration, the biosurfactant, shows great potential for use in hydrocarbon removal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pacwa-Płociniczak, M., G. A. Płaza, Z. Piotrowska-Seget, and S. S. Cameotra (2011) Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 12: 633–654.

    Article  Google Scholar 

  2. Nitschke, M. and S. G. V. A. O. Costa (2007) Biosurfactants in food industry. Trends Food Sci. Tech. 18: 252–259.

    Article  CAS  Google Scholar 

  3. Muthusamy, K., S. Gopalakrishnan, T. K. Ravi, and P. Sivachidambaram (2008) Biosurfactants: properties, commercial production and application. Curr. Sci. 94: 736–747.

    CAS  Google Scholar 

  4. Saharan, B. S., R. K. Sahu, and D. Sharma (2011) A review on biosurfactants: Fermentation, current developments and perspectives. Gen. Eng. Biotech. J. 29: 1–39.

    Google Scholar 

  5. Makkar, R. S., S. S. Cameotra, and I. M. Banat (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Exp. 1: 1–19.

    Article  Google Scholar 

  6. Pandey, A. (2003) Solid-state fermentation. Biochem. Eng. J. 13: 81–84.

    Article  CAS  Google Scholar 

  7. Stajic, M., L. Persky, D. Friesem, and Y. Hadar (2006) Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enz. Microb. Tech. 38: 65–73.

    Article  CAS  Google Scholar 

  8. Velioglu, Z. and R. Ozturk Urek (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J. Biosci. Bioeng. 120: 526–531.

    Article  CAS  Google Scholar 

  9. Bazalel, L., Y. Hadar, and C. Cerniglia (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microb. 63: 2495–2501.

    Google Scholar 

  10. Velioglu, Z. and R. Ozturk Urek (2014) Concurrent biosurfactant and ligninolytic enzyme production by Pleurotus spp. in solidstate fermentation. Appl. Biochem. Biotechnol. 174: 1354–1364.

    Article  CAS  Google Scholar 

  11. Velioglu, Z. and R. Ozturk Urek (2015) Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems. Turk. J. Bio. 39: 160–166.

    Article  CAS  Google Scholar 

  12. Pinto, M. H., R. G. Martins, and J. A. V. Costa (2009) Bacteria biosurfactants production kinetic evaluation. Química. Nova. 32: 2104–2108.

    Article  Google Scholar 

  13. Youssef, N. H., K. E. Duncan, D. P. Nagle, and K. N. Savage (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Meth. 56: 339–347.

    Article  CAS  Google Scholar 

  14. Yin, H., J. Qiang, Y. Jia, and J. Ye (2009) Characteristics of bio-surfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Proc. Biochem. 44: 302–308.

    Article  CAS  Google Scholar 

  15. Chander, C. R., T. Lohitnath, D. J. Mukesh Kumar, and P. T. Kalaichelvan (2012) Production and characterization of biosurfactant from Bacillus subtilis MTCC441 and its evaluation to use as bioemulsifier for food bio-preservative. Adv. Appl. Sci. Res. 3: 1827–1831.

    Google Scholar 

  16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  18. Dubois, M., K. A. Gilles, J. K. Hamilton, P. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  19. Weatherburn, M. W. (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971–974.

    Article  CAS  Google Scholar 

  20. Mishra, S. K., W. I. Suh, W. Farooq, and M. Moon (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155: 330–333.

    Article  CAS  Google Scholar 

  21. Chandrasekaran, E. V. and J. N. Bemiller (1980) Constituent analysis of glycosaminoglycans. pp. 89–96. In: R. L. Whistler, and M. L. Wolfrom (eds.). Methods in carbohydrate chemistry. Academic Press, NY, USA.

    Google Scholar 

  22. Wie, Y. H. and I. M. Chu (2002) Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol. Lett. 24: 479–482.

    Article  Google Scholar 

  23. Abouseoud, M., R. Maachi, A. Amrane, S. Boudergua, and A. Nabi (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalinat. 223: 143–151.

    Article  CAS  Google Scholar 

  24. Jain, R. M., K. Mody, A. Mishra, and B. Jha (2012a) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohyd. Polym. 87: 2320–2326.

    Article  CAS  Google Scholar 

  25. Jain, R. M., K. Mody, A. Mishra, and B. Jha (2012b) Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohyd. Polym. 89: 1110–1116.

    Article  CAS  Google Scholar 

  26. Latha, R. and R. Kalaivani (2012) Bacterial degradation of crude oil by gravimetric analysis. Adv. Appl. Sci. Res. 3: 2789–2795.

    CAS  Google Scholar 

  27. Sarubbo, L. A., C. B. Farias, and G. M. Campos-Takaki (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. Microbiol. 54: 68–73.

    Article  CAS  Google Scholar 

  28. Benincasa, M., A. Abalos, I. Oliveira, and A. Manresa (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. A Van. Leeuw. J. Microb. 85: 1–8.

    Article  CAS  Google Scholar 

  29. Abalos, A., A. Pinazo, M. R. Infante, and M. Casals (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 17: 1367–1371.

    Article  CAS  Google Scholar 

  30. Luna, J. M. D., L. Sarubbo, and G. M. D. Campos-Takaki (2009) A new biosurfactant produced by Candida glabrata UCP 1002: Characteristics of stability and application in oil recovery. Braz. Arch. Biol. Techn. 52: 785–793.

    Article  Google Scholar 

  31. Chooklin, C. S., S. Maneerat, and A. Saimmai (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl. Biochem. Biotechnol. 173: 624–645.

    Article  CAS  Google Scholar 

  32. Gudiña, E. J., J. A. Teixeira, and L. R. Rodrigues (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloid. Surf. B. 76: 298–304.

    Article  Google Scholar 

  33. Rochae Silva, N. M. P., R. D. Rufino, J. M. Luna, V. A. Santos, and L. A. Sarubbo (2014) Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agr. Biotechnol. 3: 132–139.

    Google Scholar 

  34. Markande, A. R., S. R. Acharya, and A. S. Nerurkar (2013) Physicochemical characterization of a thermostable glycoprotein bioemulsifier from Solibacillus silvestris AM1. Proc. Biochem. 48: 1800–1808.

    Article  CAS  Google Scholar 

  35. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira (2006) Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemoth. 57: 609–618.

    Article  CAS  Google Scholar 

  36. Abbasi, H., M. M. Hamedi, T. B. Lotfabad, and H. S. Zahiri (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 113: 211–219.

    Article  CAS  Google Scholar 

  37. Pereira, J. F., E. J. Gudiña, R. Costa, and R. Vitorino (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111: 259–268.

    Article  CAS  Google Scholar 

  38. Nikiforova, S. V., N. N. Pozdnyakova, and O. V. Turkovskaya (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1. Curr. Microbiol. 58: 554–558.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiye Velioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velioglu, Z., Urek, R.O. Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid-state fermentation. Biotechnol Bioproc E 21, 430–438 (2016). https://doi.org/10.1007/s12257-016-0139-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0139-z

Keywords

Navigation