Log in

Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity

  • RESEARCH ARTICLE
  • Published:
Virologica Sinica

Abstract

The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnihothram SS, York J, Trahey M, Nunberg JH (2007) Bitopic membrane topology of the stable signal peptide in the tripartite Junin virus GP-C envelope glycoprotein complex. J Virol 81:4331–4337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, Sperzel LE, Jones KF, Warren TK, Amanda Lund S, Kirkwood-Watts DL, King DS, Shurtleff AC, Guttieri MC, Deng Y, Bleam M, Hruby DE (2006) Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antivir Res 69:86–97

    CAS  PubMed  Google Scholar 

  • Buchmeier MJ, de la Torre JC, Peters CJ (2007) Fields Virology. Arenaviridae: the viruses and their replication, 4th edn, vol 2. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Burgeson JR, Gharaibeh DN, Moore AL, Larson RA, Amberg SM, Bolken TC, Hruby DE, Dai D (2013) Lead optimization of an acylhydrazone scaffold possessing antiviral activity against Lassa virus. Bioorg Med Chem Lett 23:5840–5843

    CAS  PubMed  Google Scholar 

  • Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081

    CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wang S, Sun J, Wang P, **n Q, Zhang L, **ao G, Wang W (2017) Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antivir Res 141:140–149

    CAS  PubMed  Google Scholar 

  • Cohen-Dvashi H, Israeli H, Shani O, Katz A, Diskin R (2016) The role of LAMP1 binding and pH sensing by the spike complex of Lassa virus. J Virol 90:10329–10338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler R, Lenz O, Garten W, Strecker T (2006) The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 3:41

    PubMed  PubMed Central  Google Scholar 

  • Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H (2006) Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol 80:5897–5907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO (2017) Structural basis for antibody-mediated neutralization of Lassa virus. Science 356:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO (2019) Convergent structures illuminate features for germline antibody binding and Pan-Lassa virus neutralization. Cell 178(1004–1015):e1014

    Google Scholar 

  • Houlihan C, Behrens R (2017) Lassa fever. BMJ 358:j2986

    PubMed  Google Scholar 

  • Igonet S, Vaney MC, Vonrhein C, Bricogne G, Stura EA, Hengartner H, Eschli B, Rey FA (2011) X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci U S A 108:19967–19972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, Hruby DE, Amberg SM (2008) Identification of a broad-spectrum arenavirus entry inhibitor. J Virol 82:10768–10775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, ** W, Shaginian A, York J, Nunberg JH, Boger DL, Oldstone MB, Kunz S (2008) Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem 283:18734–18742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Nyenhuis DA, Nelson EA, Cafiso DS, White JM, Tamm LK (2017) Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc Natl Acad Sci U S A 114:E7987–E7996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98:12701–12705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Sun Z, Pryce R, Parsy ML, Fehling SK, Schlie K, Siebert CA, Garten W, Bowden TA, Strecker T, Huiskonen JT (2016) Acidic pH-induced conformations and LAMP1 binding of the Lassa Virus glycoprotein spike. PLoS Pathog 12:e1005418

    PubMed  PubMed Central  Google Scholar 

  • Messina EL, York J, Nunberg JH (2012) Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol 86:6138–6145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo N, Cubitt B, Iwasaki M, de la Torre JC (2015) Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol 89:10924–10933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunberg JH, York J (2012) The curious case of arenavirus entry, and its inhibition. Viruses 4:83–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldstone MB (2002) Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr Top Microbiol Immunol 262:V–XII

    PubMed  Google Scholar 

  • Parsy ML, Harlos K, Huiskonen JT, Bowden TA (2013) Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol 87:13070–13075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W (2019) Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe. https://doi.org/10.1016/j.chom.2019.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaben M, Jae LT, Herbert AS, Kuehne AI, Stubbs SH, Chou YY, Blomen VA, Kirchhausen T, Dye JM, Brummelkamp TR, Whelan SP (2017) NRP2 and CD63 are host factors for Lujo Virus Cell Entry. Cell Host Microbe 22:688–696.e685

    Google Scholar 

  • Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446:92–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rathbun JY, Droniou ME, Damoiseaux R, Haworth KG, Henley JE, Exline CM, Choe H, Cannon PM (2015) Novel arenavirus entry inhibitors discovered by using a minigenome rescue system for high-throughput drug screening. J Virol 89:8428–8443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salamango DJ, Johnson MC (2015) Characterizing the murine leukemia virus envelope glycoprotein membrane-spanning domain for its roles in interface alignment and fusogenicity. J Virol 89:12492–12500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders AA, Ting JP, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ (2007) Map** the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 81:5649–5657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar S, Whitby LR, Casquilho-Gray HE, York J, Boger DL, Nunberg JH (2016) Small-molecule fusion inhibitors bind the pH-sensing stable signal peptide-GP2 subunit interface of the Lassa Virus envelope glycoprotein. J Virol 90:6799–6807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman A, Katz M, Cohen-Dvashi H, Greenblatt HM, Levy Y, Diskin R (2019) Variations in core packing of GP2 from old world mammarenaviruses in their post-fusion conformations affect membrane-fusion efficiencies. J Mol Biol 431:2095–2111

    CAS  PubMed  Google Scholar 

  • Thomas CJ, Casquilho-Gray HE, York J, DeCamp DL, Dai D, Petrilli EB, Boger DL, Slayden RA, Amberg SM, Sprang SR, Nunberg JH (2011) A specific interaction of small molecule entry inhibitors with the envelope glycoprotein complex of the Junin hemorrhagic fever arenavirus. J Biol Chem 286:6192–6200

    CAS  PubMed  Google Scholar 

  • Wang W, Zhou Z, Zhang L, Wang S, **ao G (2016) Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin 31:380–394

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Liu Y, Zhang G, Wang S, Guo J, Cao J, Jia X, Zhang L, **ao G, Wang W (2018) Screening and identification of Lassa Virus entry inhibitors from an FDA-approved drugs library. J Virol 92:e00954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willard KA, Alston JT, Acciani M, Brindley MA (2018) Identification of residues in Lassa Virus glycoprotein subunit 2 that are critical for protein function. Pathogens 8:1

    PubMed Central  Google Scholar 

  • York J, Nunberg JH (2006) Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 80:7775–7780

    CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Nunberg JH (2007) Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359:72–81

    CAS  PubMed  Google Scholar 

  • York J, Nunberg JH (2009) Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol 83:4121–4126

    CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Romanowski V, Lu M, Nunberg JH (2004) The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78:10783–10792

    CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Agnihothram SS, Romanowski V, Nunberg JH (2005) Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein. Virology 343:267–274

    CAS  PubMed  Google Scholar 

  • York J, Dai D, Amberg SM, Nunberg JH (2008) pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J Virol 82:10932–10939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Cao J, Cai Y, Liu Y, Li Y, Wang P, Guo J, Jia X, Zhang M, **ao G, Guo Y, Wang W (2019) Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2. Protein Cell 10:137–142

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Center for Instrumental Analysis and Metrology, Core Facility and Technical Support, and Center for Animal Experiment, Wuhan Institute of Virology, for providing technical assistance. This work was supported by the National Key Research and Development Program of China (2018YFA0507204), the National Natural Sciences Foundation of China (31670165), Wuhan National Biosafety Laboratory, Chinese Academy of Sciences Advanced Customer Cultivation Project (2019ACCP-MS03), the Open Research Fund Program of the State Key Laboratory of Virology of China (2018IOV001).

Author information

Authors and Affiliations

Authors

Contributions

JC, GX, and WW conceived and designed the study. Experiments were performed by JC, GZ, MZ, and YL. Data were analyzed by JC and WW. Advice for the project was received from GX and WW. WW and JC wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gengfu **ao or Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhang, G., Zhou, M. et al. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virol. Sin. 36, 273–280 (2021). https://doi.org/10.1007/s12250-020-00286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-020-00286-3

Keywords

Navigation