Log in

Status and Trajectories of Soft-Bottom Benthic Communities of the South Florida Seascape Revealed by 25 Years of Seagrass and Water Quality Monitoring

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Although seagrass ecosystems are valued for the services they provide, anthropogenic impacts have led to global declines in seagrass area. South Florida harbors one of the most extensive and iconic seagrass landscapes in the world, but historic seagrass losses appeared to threaten their integrity. The establishment of the Florida Keys National Marine Sanctuary (FKNMS) in 1995 created a benthic community and water quality monitoring network to aid management efforts. With this study, we report on the status and trajectories of benthic communities in South Florida using 25 years of monitoring data. Overall, most of our permanent monitoring sites maintained stable benthic communities over the period of observation. However, for areas that did experience decline, we identified mechanisms for loss of the climax seagrass Thalassia testudinum in the FKNMS with no or only partial recovery over decadal timescales. We observed a shift towards fast-growing Halodule wrightii meadows at anthropogenically nutrient-enriched nearshore sites along the Florida Keys. In addition, we describe almost complete loss of seagrass meadows at some exposed, back-reef sites offshore from the Florida Keys resulting from physical disturbance by major hurricanes. This study demonstrates the utility of long-term monitoring programs for the identification of benthic community trajectories and their putative drivers on the seascape scale, offering valuable lessons for the design of future seagrass monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data that form the basis of our analysis are available at https://seagrass.fiu.edu/data.htm.

References

  • Bell, S.S., M.S. Fonseca, and N.B. Stafford. 2007. Seagrass ecology: new contributions from a landscape perspective. In Seagrasses: Biology, ecology and conservation. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-2983-7_26.

    Chapter  Google Scholar 

  • Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158. https://doi.org/10.1111/j.1365-2745.2004.00943.x.

    Article  CAS  Google Scholar 

  • Boyer, J.N., and R.D. Jones. 2002. View from the bridge: External and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary. In The Everglades, Florida Bay, and coral reefs of the Florida Keys, ed. J.W. Porter and K.G. Porter, 609–628. Boca Raton: CRC Press.

    Google Scholar 

  • Braun-Blanquet, J. 1972. Plant sociology: The study of plant communities. New York: Hafner Publishing Company.

    Google Scholar 

  • Briceño, H.O., J.N. Boyer, J. Castro, and P. Harlem. 2013. Biogeochemical classification of South Florida’s estuarine and coastal waters. Marine Pollution Bulletin 75: 187–204. https://doi.org/10.1016/j.marpolbul.2013.07.034.

    Article  CAS  Google Scholar 

  • Carter, A.B., C. Collier, R. Coles, E. Lawrence, and M.A. Rasheed. 2022. Community-specific “desired” states for seagrasses through cycles of loss and recovery. Journal of Environmental Management 314: 115059. https://doi.org/10.1016/j.jenvman.2022.115059.

    Article  Google Scholar 

  • Chester, A.J., and G.W. Thayer. 1990. Distribution of spotted seatrout (Cynoscion nebulosus) and gray snapper (Lutjanus griseus) juveniles in seagrass habitats of western Florida Bay. Bulletin of Marine Science 46: 13.

    Google Scholar 

  • Collado-Vides, L., V.G. Caccia, J.N. Boyer, and J.W. Fourqurean. 2007. Tropical seagrass-associated macroalgae distributions and trends relative to water quality. Estuarine, Coastal and Shelf Science 73: 680–694. https://doi.org/10.1016/j.ecss.2007.03.009.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. https://doi.org/10.1038/387253a0.

    Article  CAS  Google Scholar 

  • Costanza, R., R. de Groot, L. Braat, I. Kubiszewski, L. Fioramonti, P. Sutton, S. Farber, and M. Grasso. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services 28: 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008.

    Article  Google Scholar 

  • Davis, B.C., and J.W. Fourqurean. 2001. Competition between the tropical alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. Aquatic Botany 71: 217–232. https://doi.org/10.1016/S0304-3770(01)00179-6.

    Article  Google Scholar 

  • den Hartog, C. 1967. The structural aspect in the ecology of sea-grass communities. Helgolander Wiss Meeresunters 15: 648–659. https://doi.org/10.1007/BF01618658.

    Article  Google Scholar 

  • Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112. https://doi.org/10.1080/00785236.1995.10422039.

    Article  Google Scholar 

  • Duarte, C.M., J.W. Fourqurean, D. Krause-Jensen, and B. Olesen. 2007. Dynamics of seagrass stability and change. In Seagrasses: Biology, Ecology and Conservation. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-2983-7_11.

    Chapter  Google Scholar 

  • Duffy, J.E., L. Benedetti-Cecchi, J. Trinanes, F.E. Muller-Karger, R. Ambo-Rappe, C. Boström, A.H. Buschmann, J. Byrnes, R.G. Coles, J. Creed, L.C. Cullen-Unsworth, G. Diaz-Pulido, C.M. Duarte, G.J. Edgar, M. Fortes, G. Goni, C. Hu, X. Huang, C.L. Hurd, C. Johnson, B. Konar, D. Krause-Jensen, K. Krumhansl, P. Macreadie, H. Marsh, L.J. McKenzie, N. Mieszkowska, P. Miloslavich, E. Montes, M. Nakaoka, K.M. Norderhaug, L.M. Norlund, R.J. Orth, A. Prathep, N.F. Putman, J. Samper-Villarreal, E.A. Serrao, F. Short, I.S. Pinto, P. Steinberg, R. Stuart-Smith, R.K.F. Unsworth, M. van Keulen, B.I. van Tussenbroek, M. Wang, M. Waycott, L.V. Weatherdon, T. Wernberg, and S.M. Yaakub. 2019. Toward a coordinated global observing system for seagrasses and marine macroalgae. Frontiers in Marine Science 6: 317. https://doi.org/10.3389/fmars.2019.00317.

    Article  Google Scholar 

  • Dunic, J.C., C.J. Brown, R.M. Connolly, M.P. Turschwell, and I.M. Côté. 2021. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Global Change Biology 27: 4096–4109. https://doi.org/10.1111/gcb.15684.

    Article  CAS  Google Scholar 

  • Ferdie, M., and J.W. Fourqurean. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography 49: 2082–2094. https://doi.org/10.4319/lo.2004.49.6.2082.

    Article  Google Scholar 

  • Fourqurean, J.W., and M.B. Robblee. 1999. Florida Bay: A history of recent ecological changes. Estuaries 22: 345–357. https://doi.org/10.2307/1353203.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., and L.M. Rutten. 2003. Competing goals of spatial and temporal resolution: Monitoring seagrass communities on a regional scale. In Monitoring ecosystem initiatives: Interdisciplinary approaches for evaluating ecoregional initiatives, ed. D.E. Busch and J.C. Trexler, 257–288. Washington, D. C.: Island Press.

    Google Scholar 

  • Fourqurean, J.W., and L.M. Rutten. 2004. The impact of hurricane Georges on soft-bottom, back reef communities: Site- and species-specific effects in south Florida seagrass beds. Bulletin of Marine Science 75: 20.

    Google Scholar 

  • Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, USA. Biogeochemistry 61: 229–245. https://doi.org/10.1023/A:1020293503405.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N: P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37: 162–171. https://doi.org/10.4319/lo.1992.37.1.0162.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., R.D. Jones, and J.C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions. Estuarine, Coastal and Shelf Science 36: 295–314. https://doi.org/10.1006/ecss.1993.1018.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., G.V.N. Powell, W.J. Kenworthy, and J.C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72: 349. https://doi.org/10.2307/3546120.

    Article  Google Scholar 

  • Fourqurean, J.W., A.W. Willsie, C.D. Rose, and L.M. Rutten. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Marine Biology 138: 341–354. https://doi.org/10.1007/s002270000448.

    Article  Google Scholar 

  • Fourqurean, J.W., M.J. Durako, M.O. Hall, and L.N. Hefty. 2002. Seagrass distribution in south Florida: a multi-agency coordinated monitoring program. In The Everglades, Florida Bay, and the coral reefs of the Florida Keys, ed. J.W. Porter and K.G. Porter, 497–522. Boca Raton: CRC Press. https://doi.org/10.1201/9781420039412-22.

    Chapter  Google Scholar 

  • Fourqurean, J.W., S.A. Manuel, K.A. Coates, S.C. Massey, and W.J. Kenworthy. 2019. Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas. Estuaries and Coasts: Journal of the Estuarine Research Federation 42: 1524–1540. https://doi.org/10.1007/s12237-019-00587-1.

    Article  CAS  Google Scholar 

  • Frankovich, T., and J. Fourqurean. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Marine Ecology Progress Series 159: 37–50. https://doi.org/10.3354/meps159037.

    Article  CAS  Google Scholar 

  • Fredley, J., M.J. Durako, and M.O. Hall. 2019. Multivariate analyses link macrophyte and water quality indicators to seagrass die-off in Florida Bay. Ecological Indicators 101: 692–701. https://doi.org/10.1016/j.ecolind.2019.01.074.

    Article  CAS  Google Scholar 

  • Furman, B., E. Leone, S. Bell, M. Durako, and M. Hall. 2018. Braun-Blanquet data in ANOVA designs: Comparisons with percent cover and transformations using simulated data. Marine Ecology Progress Series 597: 13–22. https://doi.org/10.3354/meps12604.

    Article  CAS  Google Scholar 

  • Hall, M.O., M.J. Durako, J.W. Fourqurean, and J.C. Zieman. 1999. Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries 22: 445–459. https://doi.org/10.2307/1353210.

    Article  Google Scholar 

  • Hall, M.O., B.T. Furman, M. Merello, and M.J. Durako. 2016. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: Initial observations. Marine Ecology Progress Series 560: 243–249. https://doi.org/10.3354/meps11923.

    Article  Google Scholar 

  • Hall, M.O., S.S. Bell, B.T. Furman, and M.J. Durako. 2021. Natural recovery of a marine foundation species emerges decades after landscape-scale mortality. Science and Reports 11: 6973. https://doi.org/10.1038/s41598-021-86160-y.

    Article  CAS  Google Scholar 

  • Hastings, K., P. Hesp, and G.A. Kendrick. 1995. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean & Coastal Management 26: 225–246. https://doi.org/10.1016/0964-5691(95)00012-Q.

    Article  Google Scholar 

  • Herbert, D.A., and J.W. Fourqurean. 2008. Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11: 688–700. https://doi.org/10.1007/s10021-008-9151-2.

    Article  CAS  Google Scholar 

  • Howard, J.L., A. Perez, C.C. Lopes, and J.W. Fourqurean. 2016. Fertilization changes seagrass community structure but not blue carbon storage: Results from a 30-year field experiment. Estuaries and Coasts 39: 1422–1434. https://doi.org/10.1007/s12237-016-0085-1.

    Article  Google Scholar 

  • Kenworthy, W.J., M.J. Durako, S.M.R. Fatemy, H. Valavi, and G.W. Thayer. 1993. Ecology of seagrasses in Northern Saudi Arabia one year after the Gulf War oil spill. Marine Pollution Bulletin 27: 213–222. https://doi.org/10.1016/0025-326X(93)90027-H.

    Article  Google Scholar 

  • Kirkman, H. 1985. Community structure in seagrasses in southern western Australia. Aquatic Botany 21: 363–375. https://doi.org/10.1016/0304-3770(85)90077-4.

    Article  Google Scholar 

  • Kirkman, H., and J. Kirkman. 2000. Long-term seagrass meadow monitoring near Perth, Western Australia. Aquatic Botany 67: 319–332. https://doi.org/10.1016/S0304-3770(00)00097-8.

    Article  Google Scholar 

  • Klein, C.J.I., and S.P.J. Orlando. 1994. A spatial framework for water-quality management in the Florida Keys National Marine Sanctuary. Bulletin of Marine Science 54: 1036–1044.

    Google Scholar 

  • Kruczynski, W.L. 1999. Water quality concerns in the Florida Keys: sources, effects and solutions, vol. 90. United States Environmenal Protection Agency.

    Google Scholar 

  • Kruczynski, W.L., and P.J. Fletcher. 2012. Tropical connections: South Florida’s marine environment, 492. Cambridge, MD: IAN Press.

    Google Scholar 

  • Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2 (3): 18–22. https://CRAN.R-project.org/doc/Rnews/. Accessed 1 Dec 2022.

  • Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. 2021. cluster: Cluster Analysis Basics and Extensions. R Package version 2.1.2.

    Google Scholar 

  • Mtwana Nordlund, L., E.W. Koch, E.B. Barbier, and J.C. Creed. 2016. Seagrass Ecosystem services and their variability across genera and geographical regions. PLoS ONE 11: e0163091. https://doi.org/10.1371/journal.pone.0163091.

    Article  CAS  Google Scholar 

  • Neckles, H.A., B.S. Kopp, B.J. Peterson, and P.S. Pooler. 2012. Integrating scales of seagrass monitoring to meet conservation needs. Estuaries and Coasts: Journal of the Estuarine Research Federation 35: 23–46. https://doi.org/10.1007/s12237-011-9410-x.

    Article  Google Scholar 

  • Nuttle, W.K., J.W. Fourqurean, B.J. Cosby, J.C. Zieman, and M.B. Robblee. 2000. Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36: 1805–1822. https://doi.org/10.1029/1999WR900352.

    Article  Google Scholar 

  • Patriquin, D.G. 1975. “Migration” of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications. Aquatic Botany 1: 163–189. https://doi.org/10.1016/0304-3770(75)90021-2.

    Article  Google Scholar 

  • Pfleiderer, P., S. Nath, and C.-F. Schleussner. 2022. Extreme Atlantic hurricane seasons made twice as likely by ocean warming. Weather and Climate Dynamics 3: 471–482. https://doi.org/10.5194/wcd-3-471-2022.

    Article  Google Scholar 

  • Porter, J.W., V.N. Kosmynin, K.L. Patterson, K.G. Porter, W.C. Jaap, J. Wheaton, K. Hackett, M. Lybolt, C.P. Tsokos, G.P. Yanev, D. Marcinek, J. Dotten, D. Eaken, M. Patterson, O.W. Meier, M. Brill, and P.A. Dustan. 2002. Detection of coral reef change by the florida keys coral reef monitoring project. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An ecosystem sourcebook, ed. J.W. Porter and K.G. Porter, 750–769. Boca Raton: CRC Press.

    Google Scholar 

  • Robblee, M.B., T.R. Barber, P.R. Carlson, M.J. Durako, J.W. Fourqurean, L.K. Muehlstein, D. Porter, L.A. Yarbro, R.T. Zieman, and J.C. Zieman. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71: 297–299. https://doi.org/10.3354/meps071297.

    Article  Google Scholar 

  • Scheffer, M., J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, and G. Sugihara. 2009. Early-warning signals for critical transitions. Nature 461: 53–59. https://doi.org/10.1038/nature08227.

    Article  CAS  Google Scholar 

  • Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23: 17–27. https://doi.org/10.1017/S0376892900038212.

    Article  Google Scholar 

  • Stekhoven, D.J., and P. Buehlmann. 2012. MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics 28 (1): 112–118. https://doi.org/10.1093/bioinformatics/btr597.

    Article  CAS  Google Scholar 

  • Turschwell, M.P., R.M. Connolly, J.C. Dunic, M. Sievers, C.A. Buelow, R.M. Pearson, V.J.D. Tulloch, I.M. Côté, R.K.F. Unsworth, C.J. Collier, and C.J. Brown. 2021. Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proceedings of the National Academy of Sciences 118: e2110802118. https://doi.org/10.1073/pnas.2110802118.

    Article  CAS  Google Scholar 

  • Walker, D., G. Kendrick, A. McComb, A. Larkum, R. Orth, and C. Duarte. 2007. Decline and recovery of seagrass ecosystems– the dynamics of change. In Seagrasses: Biology, Ecology and Conservation, 551–565. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-2983-7_23.

    Chapter  Google Scholar 

  • Weisberg, R.H., L. Zheng, and Y. Liu. 2016. West Florida shelf upwelling: Origins and pathways. Journal of Geophysical Research: Oceans 121: 5672–5681. https://doi.org/10.1002/2015JC011384.

    Article  Google Scholar 

  • Wilson, S.S., B.T. Furman, M.O. Hall, and J.W. Fourqurean. 2020. Assessment of Hurricane Irma impacts on south florida seagrass communities using long-term monitoring programs. Estuaries and Coasts: Journal of the Estuarine Research Federation 43: 1119–1132. https://doi.org/10.1007/s12237-019-00623-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Over the course of almost three decades of this monitoring program, dozens of post-docs, students, and technicians have contributed by collecting data, interpreting results, and innovating lab and field procedures. Among those most important for the success of the program have been seagrass lab managers Allan Willsie, Andy Davis, Susie Escorcia, Pamela Parker, Jeana Drake, Rachel Decker, Alex Perez, Kevin Cunniff, and Leanne Rutten. Jeff Absten was the prime field manager for the water quality data collection. We thank the great management and guidance from our two project managers from the US Environmental Protection Agency who have overseen the Water Quality Protection Program for the Florida Keys National Marine Sanctutary, and Fred McManus and Steven Blackburn, who managed to keep the resources committed to the project flowing and challenged us at every step to keep the program relevant to resource managers. This is contribution #1506 from the Coastlines and Oceans Division of the Institute of Environment at Florida International University. This research was carried out on the traditional lands of the Taino, Matacumbe, Tequesta, and Calusa people.

Funding

The benthic habitat monitoring was funded by the United States Environmental Protection Agency (grants EPA: SF-02D05421, X994620-94, X97468102, X7-95447909-0, X7-95469210, and X7-00D39015) and the National Oceanic and Atmospheric Administration (grants NA16OP2553, NA04NOS4780024, and 43WGNC700030). Water quality monitoring was funded by grants X7-96410604, X7-95469410, X7-00D02412, SF-02D05321, X7-95469410, X7-00D49716, and X7-95447909-0. Monitoring in the Dry Tortugas was funded by the United States Park Service (grants H5000060104/J5299100008, P16AC01238, P22AC00623). Much of the Florida Bay work was supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research Program under Grant Nos. DEB-9910514, DBI-0620409, DEB-1237517, DEB-1832229, and DEB-2025954.

Author information

Authors and Affiliations

Authors

Contributions

Study design: JF, JB, HB; Data collection: JK, CL, SW, HB; Data analysis: JK; Interpretation of results: JF, JK, CL, SW; Initial manuscript: JF, JK; Manuscript edits: JF, JK, CL, SW, HB, JB.

Corresponding author

Correspondence to James W. Fourqurean.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Just Cebrian

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 344 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, J.R., Lopes, C.C., Wilson, S.S. et al. Status and Trajectories of Soft-Bottom Benthic Communities of the South Florida Seascape Revealed by 25 Years of Seagrass and Water Quality Monitoring. Estuaries and Coasts 46, 477–493 (2023). https://doi.org/10.1007/s12237-022-01158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01158-7

Keywords

Navigation