Log in

Simple Sequence Repeat-Based Genetic Diversity and Analysis of Molecular Variance among on-Farm Native Potato Landraces from the Influence Zone of Camisea Gas Project, Northern Ayacucho, Peru

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The Andean native potato is an important food security crop and constitutes a gene pool for potato-breeding. To establish the current state of the native potatoes diversity in the influence zone of the Camisea Gas Project, North Ayacucho, Peru, landraces (n = 144) were collected. Three sampling populations (Anco, Chungui and Ticllas) were resolved using 10 simple sequence repeats (SSRs) markers that amplified 67 polymorphic alleles. Principal component, correspondence and cluster analysis revealed a minimum set of six SSRs to achieve DNA fingerprinting and cost-effective genetic diversity analysis. Analysis of molecular variance (AMOVA), average fixation index (FST = 0.279), and genetic distance index (SB) indicated that the genetic diversity of the native potatoes is high at the intra- and inter-population levels, and each of the three sampling populations constituted closed populations. The three populations were genetically distinct and contained unique genotypes and exclusive alleles. Misidentified native potatoes (10.41%) were found.

Resumen

La papa nativa andina, es importante para la seguridad alimentaria, constituye un reservorio de genes para el mejoramiento del cultivo. Con el objetivo de establecer el estado actual de la diversidad de papas nativas en la zona de influencia del Proyecto Peruano Gas de Camisea en el norte del departamento de Ayacucho, Perú se colectaron 144 variedades locales en tres distritos (Anco, Chungui y Ticllas). Usando diez marcadores SSR se amplificaron 67 alelos polimórficos. Los análisis de componentes principales, de correspondencia múltiple y de agrupamiento revelaron que se podría usar un set mínimo de seis SSR para el ADN fingerprintig y análisis de diversidad genética costo-efectivo. El AMOVA, el índice promedio de fijación (FST = 0.279) y el índice de distancia genética (SB) muestran que la diversidad genética a nivel intra e inter-poblacional es alto, las tres poblaciones difieren genéticamente, contienen genotipos únicos y alelos exclusivos. El 10.41% de papas nativas estaban mal identificados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ah-Hen, K., C. Fuenzalida, S. Hess, A. Contreras, A. Vega-Gálvez, and R. Lemus-Mondaca. 2012. Antioxidant capacity and total phenolic compounds of twelve selected potato landrace clones grown in southern Chile. Chilean Journal of Agricultural Research 72 (1): 3–9.

    Article  Google Scholar 

  • Andrade-Piedra, J. and L. Torres. 2011. Inventario de tecnologías e información para el cultivo de papa en Ecuador. https://cipotato.org/papaenecuador

  • Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M.R. Herrera, L. Hoffmann, J.F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars of Solanum tuberosum L. as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55: 366–378.

    Article  CAS  PubMed  Google Scholar 

  • Anoumaa, M., N.K. Yao, E.B. Kouam, et al. 2017. Genetic diversity and core collection for potato (Solanum tuberosum L.) cultivars from Cameroon as revealed by SSR. American Journal of Potato Research 94 (4): 449–463.

    Article  CAS  Google Scholar 

  • Archak, S. 2000. Plant DNA fingerprinting: An overview. AgBiotechNet. Review Article 2: ABN046.

    Google Scholar 

  • Ashkenazi, V., E. Chani, U. Lavi, D. Levy, J. Hillel, and R.E. Veilleux. 2001. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome 44 (1): 50–62.

    Article  CAS  PubMed  Google Scholar 

  • Aswathy, N., P. Vidya, V. Ambu, J. Sreekumar, and C. Mohan. 2017. Genétic diversity studies in cultivated sweet potato (Ipomoea batatas (L.) lam) revealed by simple sequence repeat markers. International Journal of Advanced Biotechnology Research 7 (1): 33–48.

    Google Scholar 

  • Bali, S., V. Sathuvalli, C. Brown, R. Novy, L. Ewing, J. Debons, D. Douches, J. Coombs, D. Navarre, J. Whitworth, B. Charlton, S. Yilma, C. Shock, J. Stark, M. Pavek, and N. Knowles. 2016. Genetic fingerprinting of potato varieties from the northwest potato variety development program. American Journal of Potato Research 94 (1): 54–63.

    Article  CAS  Google Scholar 

  • Bali, S., G. Patel, R. Novy, K. Vining, C. Brown, D. Holm, G. Porter, J. Endelman, A. Thompson, and V. Sathuvalli. 2018. Evaluation of genetic diversity among russet potato clones and varieties from breeding programs across the United States. PLoS One 13 (8): e0201415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boada-Higuera, M.Y., J.L. Mejía-Ramírez, N. Ceballos-Aguirre, and F.J. Orozco. 2010. Evaluación agronómica de treinta introducciones de tomate silvestre tipo cereza (Solanum lycopersicum L.). Agronomía 18 (2): 59–67.

    Google Scholar 

  • Cadima, X., S. Veramendi, and J. Gabriel. 2013. Using simple sequence repeats molecular markers to analyze the genetic diversity of potato landraces from Bolivia. Journal Selva Andina Research Society 4 (1): 18–30.

    Google Scholar 

  • Campos, D., G. Noratto, R. Chirinos, C. Arbizu, W. Roca, and L. Cisneros-Zevallos. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato Solanum sp., mashua Tropaeolum tuberosum Ruiz and Pavón, oca Oxalis tuberosa Molina and ulluco Ullucus tuberosus Caldas. Journal of the Science of Food and Agriculture 86: 1481–1488.

    Article  CAS  Google Scholar 

  • Charepalli, V., L. Reddivari, S. Radhakrishnan, R. Vadde, R. Agarwal, and J. Vanamala. 2015. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. The Journal of Nutritional Biochemistry. https://doi.org/10.1016/j.jnutbio.2015.08.005.

  • Chimote, V.P., S.K. Chakrabarti, D. Pattanayak, and P.S. Naik. 2004. Semi–automated simple sequence repeat analysis reveals narrow genetic base in Indian potato cultivars. Biologia Plantarum 48 (4): 517–522.

    Article  CAS  Google Scholar 

  • CIP (International Potato Center). 2006. Catálogo de variedades de papa nativa de Huancavelica-Perú. Federación Departamental de Comunidades Campesinas (FEDECH). Centro Internacional de la Papa ISBN 92–9060–274–0. 208 p.

  • CIP (International Potato Center). 2015. Catalog of ancestral potato varieties from Chugay, La Libertad – Peru. Instituto Nacional de Innovación Agraria (INIA). Centro Internacional de la Papa ISBN 978–92–9060–467–9. 204 p.

  • Combs, J., L. Frank, and D. Douches. 2004. An applied fingerprinting for cultivated potato using sequence repeats. American Journal of Potato Research 81: 243–250.

    Article  Google Scholar 

  • Coté, M.J., L. Leduc, and A. Reid. 2013. Evaluation of simple sequence repeat (SSR) markers established in Europe as a method for the identification of potato varieties grown in Canada. American Journal of Potato Research 90: 340–350.

    Article  CAS  Google Scholar 

  • Dammert, A. and F. Molinelli. 2006. ¿Qué significa el proyecto camisea?. Documento de Trabajo No 23, Oficina de Estudios Económicos OSINERGMIN. Perú. http://www.osinerg.gob.pe/osinerg/investigacion

  • De Haan, S., J. Nunez, M. Bonierbale, and M. Ghislain. 2010. Multilevel agrobiodiversity and conservation of Andean potatoes in Central Peru: Species, morphological, genetic, and spatial diversity. Mountain Research and Development 30: 222–231.

    Article  Google Scholar 

  • De Haan, S., J. Nunez, M. Bonierbale, M. Ghislain, and J. Van der Maesen. 2013. A simple sequence repeat (SSR) marker comparison of a large In- and Ex-situ potato landrace cultivar collection from Peru reaffirms the complementary nature of both conservation strategies. Diversity 5: 505–521.

    Article  Google Scholar 

  • Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Journal of the European Association for Potato Research 57: 185–199.

    Article  Google Scholar 

  • Dorado, M. 2014. Variabilidad genética de Phytophthora infestans aislado de Solanum betaceum en los departamentos de Nariño y Putumayo mediante marcadores microsatélite. Tesis. Universidad de Nariño, Facultad de Ciencias Exactas y Naturales. Colombia.

  • Doyle, J.J., and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12 (1): 13–15.

    Google Scholar 

  • Duan, Y., J. Liu, J. Xu, C. Bian, S. Duan, W. Pang, J. Hu, G. Li, and L. **. 2019. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China. American Journal of Potato Research 96: 21–32.

    Article  CAS  Google Scholar 

  • Erazzú, L., E. Camadro, and A. Clausen. 2009. Persistence over time, overlap** distribution and molecular indications of interspecific hybridization in wild potato populations of Northwest Argentina. Euphytica 168: 249–262.

    Article  Google Scholar 

  • Esfahani, S.T., B. Shiran, and G. Balali. 2009. AFLP markers for the assessment of genetic diversity in European and north American potato varieties cultivated in Iran. Crop Breeding and Applied Biotechnology 9: 75–86.

    Article  Google Scholar 

  • Excoffier, L., and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources 10: 564–567.

    Article  PubMed  Google Scholar 

  • FAOSTAT. 2017. FAO production statistics. Food Agriculture Organization. www. faostat.fao.org.

  • Feingold, S., J. Lloyd, N. Norero, M. Bonierbale, J. Lorenzen. 2005. Map** and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics 111(3)https://rd.springer.com/journal/122/111/3/page/1:456–466.

  • Fonseca, C., G. Burgos, F. Rodríguez, L. Muñoa, and M. Ordinola. 2014. Catálogo de variedades de papa nativa con potencial para la seguridad alimentaria y nutricional de Apurímac y Huancavelica. Lima: Centro Internacional de la Papa. isbn:978-92-9060-454-9.

    Google Scholar 

  • Ghislain, M., B. Trognitz, M. Herrera, J. Solis, G. Casallo, C. Vásquez, O. Hurtado, R. Castillo, L. Portal, and M. Orrillo. 2001. Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and S. tuberosum grown under short-day conditions. Theoretical and Applied Genetics 103: 433–442.

    Article  CAS  Google Scholar 

  • Ghislain, M., D. Spooner, M. Rodriguez, F. Villamn, F. Nfflez, C. Vasquez, R. Waugh, and M. Bonierbale. 2004. Selection of highly informative and user-friendly microsatellites (SSRs) for genoty** of cultivated potato. Theoretical and Applied Genetics 108: 881–890.

    Article  CAS  PubMed  Google Scholar 

  • Ghislain, M., J. Nuñez, M. Herrera, J. Pignataro, F. Guzman, M. Bonierbale, and D. Spooner. 2009. Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding 23: 377–388.

    Article  CAS  Google Scholar 

  • Gibson, S., and A.C. Kurilich. 2013. The nutritional value of potatoes and potato products in the UK diet. Nutrition Bulletin. 38: 389–399.

    Article  Google Scholar 

  • González-Aguilera, J., L. Pessoni, G. Belfort-Rodrigues, A. Elsayed, D.J. Henriques-da Silva, and E. Gonçalves-de Barros. 2011. Genetic variability by ISSR markers in tomato (Solanum lycopersicum mill.). Revista Brasileña de Ciencias Agrarias 6 (2): 243–252.

    Article  Google Scholar 

  • Haynes, K.G., H.E.M. Zaki, and C.T. Christensen. 2017. High levels of heterozygosity found for 15 SSR loci in Solanum chacoense. American Journal of Potato Research 94 (6): 638–646.

    Article  CAS  Google Scholar 

  • IPGRI (International Plant Genetic Resources Institute). 2004. Análisis de la diversidad genética utilizando datos marcadores moleculares: Módulo de aprendizaje. Medidas de la diversidad genética. IPGRI y Cornell University https://es.scribd.com/document/309699803/Medida-de-La-Diversidad-Genetica.

  • Ispizúa, V., I.R. Guma, S. Feingold, A.M. Clausen, E. Ogden, L.J. Rowland, M. Kramer, and L. Zotarelli. 2007. Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats (SSRs). Genetic Resources and Crop Evolution 54: 1833–1848.

    Article  Google Scholar 

  • Jones, C.J., K.J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. Van de Wiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linacero, A. Vasquez, and A. Karp. 1997. Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories. Molecular Breeding 3: 381–390.

    Article  CAS  Google Scholar 

  • Juyó, D.K. 2012. Diversidad genética y estructura poblacional en genotipos diploides de papa. Colombia: Tesis. Universidad Nacional de Colombia. Facultad de Agronomía. Bogota.

    Google Scholar 

  • Karaagac, E., S. Yilma, and M.I. Vales. 2010. SSR-based DNA fingerprinting of potato clones from the Pacific northwest potato variety development program. Acta Horticulturae 859: 121–128.

    Article  Google Scholar 

  • Kishine, M., K. Tsutsumi, and K. Kitta. 2017. A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars. Breeding Science 67: 544–547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolech, S.A., D. Halseth, W. DeJong, K. Perry, D. Wolfe, F.M. Tiruneh, and S. Schulz. 2015. Potato cultivar diversity, determinants and implications for potato breeding strategy in Ethiopia. American Journal of Potato Research 92: 551–566.

    Article  Google Scholar 

  • Kuroda, Y., N. Tomooka, A. Kaga, S.M. Wanigadeva, and D.A. Vaughan. 2009. Genetic diversity of wild soybean (Glycine soja Sieb. Et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genetic Resources and Crop Evolution 56: 1045–1055.

    Article  CAS  Google Scholar 

  • Lachman, J., K. Hamouz, M. Orsák, and Z. Kotíková. 2016. Carotenoids in potatoes – A short overview. Plant Soil Environment 62 (10): 474–481.

    Article  CAS  Google Scholar 

  • Londoño, J., D. Gil, S. Aguilar, F. Rivera, and G. López. 2011. Caracterización molecular de clones de Theobroma cacao l., por medio de marcadores moleculares microsatellite. Universidad de Caldas. Revista.luna.azúl 32: 52–60.

    Google Scholar 

  • Maniatis, T.; E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratories. New York. https://doi.org/10.1002/jobm.19840240107

  • Maras, M., A. Sedlar, A. Reid, V. Božović, Z. Jovović, V. Meglič, and P. Dolničar. 2017. Genetic diversity and redundancy among potato accessions in the Montenegrin collection as revealed by microsatellite markers. American Journal of Potato Research 94: 306–313.

    Article  CAS  Google Scholar 

  • Marchezi, P., T. Campos, A. Barbosa, D. Sforça, G. Montan, and A. Pereira. 2010. Potato cultivar identifi- cation using molecular markers. Pesquisa Agropecuária Brasileira 45 (1): 110–113.

    Article  Google Scholar 

  • Milbourne, D., R.C. Meyer, A.J. Collins, L.D. Ramsay, C. Gebhardt, and R. Waugh. 1998. Isolation, characterization and map** of simple sequence repeat loci in potato. Molecular Genetics and Genomics 259: 233–245.

    Article  CAS  Google Scholar 

  • MINAGRI (Ministerio de Agricultura y Riego). 2017. Catálogo de variedades de papa nativa del sureste del departamento de Junín - Perú. Lima (Perú). Grupo Yanapai, Instituto Nacional de Innovación Agraria (INIA) y Centro Internacional de la Papa (CIP). Centro Internacional de la Papa ISBN 978–92–9060–208–8. 228 p.

  • Monte, M., M. Rey, M. Carboni, M. Castellote, S. Sucar, N. Norero, S. Colman, G. Massa, M. Colavita, and S. Feingold. 2018. Genetic diversity in argentine Andean potatoes by means of functional markers. American Journal of Potato Research 3: 286–300.

    Article  CAS  Google Scholar 

  • Monteros-Altamirano, A., J. Buitrón-Bustamante, K. Orbe-Vergara, and X. Cuesta-Subía. 2017. Ecuadorian potato landraces: Traditional names and genetic identity. Revista Fitotecnia Mexicana 40 (4): 481–489.

    Google Scholar 

  • Nei, M. 1973. Analisys de gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70: 3321–3323.

    Article  CAS  Google Scholar 

  • Norero, N., J. Malleville, M. Huarte, and S. Feingold. 2002. Cost efficient potato (Solanum tuberosum L.) cultivar identification by microsatellite amplification. Journal of the European Association for Potato Research 45: 131–138.

    Article  CAS  Google Scholar 

  • Nováková, A., K. Šimáčková, J. Bárta, and V. Čurn. 2010. Utilization of DNA markers based on microsatellite polymorphism for identification of potato varieties cultivated in the Czech Republic. Journal Central European Agriculture 11 (4): 415–422.

    Article  Google Scholar 

  • Ochoa, C.M. 1999. Las papas de Sudamérica: Perú (Parte 1). Kansas, Estados Unidos (USA): Allen Press.

    Google Scholar 

  • OSINERGMIN. 2014. La industria del gas natural en el Perú a diez años del proyecto camisea. http://www.osinergmin.gob.pe/seccion/centro_documental/Institucional/Estudios_Economicos/Libros/Libro-Industria-Gas-Natural-Peru-10 años-Camisea.pdf.

  • Ovchinikova, A., E. Krylova, T. Gavrilenk, T. Smekalova, M. Zhuk, S. Knapp, and D. Spooner. 2011. Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society 165: 107–155.

    Article  Google Scholar 

  • Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, J.R. 2004. Evaluación de la diversidad genética de papas nativas (Solanum tuberosum L. ssp. tuberosum Hawkes) silvestres y cultivadas del sur de Chile, mediante el uso de marcadores microsatélites. Tesis. Universidad Austral de Chile, Valdivia – Chile.

  • Perú-LNG. 2017. Memoria annual: 2017 https://perulng.com/wp-content/uploads/2018/05/032718–Memoria–2017_VF_SMV.pdf.

  • PGSC (The Potato Genome Sequencing Consorcium). 2011. Genome sequence and analysis of the tuber crop potato. NATURE 475: 189–195.

    Article  CAS  Google Scholar 

  • Pissard, A.C., M. Ghislain Arbizu, and P. Bertin. 2008. Influence of geographical provenance on the genetic structure and diversity of vegetatively propagated Andean tuber crop, mashua (Tropaeolum tuberosum), highlighted by intersimple sequence repeat markers and multivariate analysis methods. International Journal of Plant Sciences 169 (9): 1248–1260.

    Article  CAS  Google Scholar 

  • Quavii and PROMIGAS. 2018. Informe del sector gas natural en Perú 2018 cifras 2017, III edición. http://www.promigas.com/Es/Noticias/Documents/Informe–Sector–Gas–Peru/ISGNPERU2018_181018_DIGITAL.pdf

  • Raker, C., and D.M. Spooner. 2002. The Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations; microsatellite data. Crop Science 42: 1451–1458.

    Article  Google Scholar 

  • Richman, A., K. Teh-Hui, S. Schaeffer, and M. Uyenoyama. 1995. S-allele sequence diversity in natural populations of Solanum carolinense (Horsenettle). Heredity 75: 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Ríos, D., M. Ghislain, F. Rodríguez, and D.M. Spooner. 2007. What is the origin of the European potato? Evidence from Canary Island landraces. Crop Science 47: 1271–1280.

    Article  CAS  Google Scholar 

  • Roa, S., H. Fernández, L. Angulo, N. Useche, and Y. De Faría. 2014. Molecular characterization of Rubus genotypes by microsatellite markers. Agronomía Tropical 64 (1–2): 61–72.

    Google Scholar 

  • Roca, L. 2015. Análisis de la diversidad genética de papas nativas de la zona suroeste del departamento de Junín mediante el uso de marcadores moleculares microsatelites. Tesis: Universidad Nacional Agraria La Molina (UNALM), Lima Perú.

    Google Scholar 

  • Rohlf, F.J. 2002. NTSYS pc: Numerical taxonomy system, version 2.1. Exeter publishing, Setauket, New York.

  • Salas, A., D.M. Spooner, Z. Huamán, R.V. Torres, R. Hoekstra, K. Shuler, and R.J. Hijmans. 2001. Taxonomy and new collections of wild potato species in central and southern Peru in 1999. American Journal of Potato Research78:197–207.

  • Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. A poor man’s approach to genoty** for research and high-throughput diagnostics. Nature Biotechnology 18 (2): 233–234.

    Article  CAS  PubMed  Google Scholar 

  • Scurrah, M.C., S. Chumbiauca Celis-Gamboa, A. Salas, and R. Visser. 2008. Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes. Euphytica 164: 881–892.

    Article  Google Scholar 

  • Sharma, V., and M. Nandeneni. 2014. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon-based marker systems. Molecular Phylogenetics and Evolution 73: 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., J. Karihaloo, and A.B. Gaikward. 2007. DNA fingerprinting of some mango (Mangifera indica L) cultivars using anchored-ISSR markers. Journal of Plant Biochemistry and Biotechnology 16 (2): 113–117.

    Article  CAS  Google Scholar 

  • Sokal, R., and J. Rohlf. 1994. Biometry: The principles and practice of statistics in biological research. 3ra ed. NY: Freeman & Co.

  • Soto, J., T. Medina, Y. Aquino, and R. Estrada. 2014. Genetic diversity of native potatoes (Solanum spp.) conserved in landraces from Peru. Revista Peruana de Biologia 20 (3): 215–222.

    Google Scholar 

  • Spanoghe, M., T. Marique, J. Rivière, D. Lanterbecq, and M. Gadenne. 2015. Investigation and development of potato parentage analysis methods using multiplexed SSR fingerprinting. European Association for Potato Research 58 (1): 43–65.

    Article  CAS  Google Scholar 

  • Spooner, D.M., A. Salas, Z. Huamán, and R. Hijmans. 1999. Wild potato collecting expedition in southern Peru (Departments of Apurimac, Arequipa, Cusco, Moquegua, Puno y Tacna) in 1998: Taxonomy and new genetic resources. American Journal of Potato Research 76: 103–119.

    Article  Google Scholar 

  • Spooner, D.M., J. Nunez, G. Trujillo, M. Herrera, F. Guzman, and M. GhislainM. 2007. Extensive simple sequence repeat genoty** of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences 104: 19398–19403.

    Article  CAS  Google Scholar 

  • Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics and evolution of wild and cultivated potatoes. The Botanical Review 80: 283–383.

    Article  Google Scholar 

  • Sukhotu, T., O. Kamijima, and K. Hosaka. 2005. Genetic diversity of the Andean tetraploid cultivated potato (Solanum tuberosum L. ssp. andigena Hawkes) evaluated by chloroplast and nuclear DNA markers. Genome 48: 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, J.K., B.P. Singh, J. Gopal, Poonam and V.U. Patil. 2013. Molecular characterization of the Indian andígena potato core collection using microsatellite markers. African Journal of Biotechnology 12 (10):1025–1033.

  • Torres, Y.C. 2012. Integración de marcadores microsatélites en el mapa ultradenso de Solanum tuberosum y su comparación con el de Solanum phureja. Lima, Perú: Tesis. Universidad Nacional Mayor de San Marcos.

    Google Scholar 

  • Vargas, P. 2009. El cambio climático y sus efectos en el Perú. Banco Central de Reserva del Perú, D.T. N°2009–14. Serie de documentos de Trabajo. Lima, Perú.

  • Yu-sha, M., Z. Ning, L. Hui, Z. Hong, H. Shao-zhen, and L. Qing-chang. 2018. SSR figerprinting of 203 sweetpotato (Ipomoea batatas (L.) lam.) varieties. Journal of Integrative Agriculture 17 (1): 86–93.

    Article  Google Scholar 

  • Zavala, A., E. Guadalupe, N. Carrillo. 2007. The gas of camisea: Geology, economy and uses. Revista del Instituto de Investigaciones FIGMMG, UNMSM. Vol. 10, N° 19, 113–119.

  • Zeven, A.C. 1998. Landraces: A review of definitions and classifications. Euphytica 104: 127–139.

    Article  Google Scholar 

  • Zhuk A., I. Veinberga, I. Skrabule, D. Ruħăis. 2008. Characterization of Latvian potato genetic resources by DNA fingerprinting with SSR markers. AGRONOMIJAS VĒSTIS. Latvian Journal of Agronomy No.11, LLU.

Download references

Acknowledgements

The authors wish to thank Dr. William Roca Pizzini (International Potato Center (CIP), Peru) for his review and analysis of the first draft of this manuscript. The authors too would like to thank Enago (www.enago.com) for the English language review. This work was supported by the Socioeconomic Development Fund of Camisea (ley N° 28451-MEF-PERU) of the Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Peru. The work was carried out through inter-institutional collaboration with Universidad Peruana Cayetano Heredia (UPCH).

Author information

Authors and Affiliations

Authors

Contributions

GO, TY, and GDC conceived the project; TY and GDC collected the field samples; TY, EN, and GDC performed the molecular marker LI-COR analysis; RB, EN, and GDC performed the calculations and statistical analysis. GDC, EN, and GO wrote the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Edgar Neyra.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(XLSX 44 kb)

ESM 2

(RTF 40262 kb)

ESM 3

(RTF 38997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Cruz, G., Miranda, T.Y., Blas, R.H. et al. Simple Sequence Repeat-Based Genetic Diversity and Analysis of Molecular Variance among on-Farm Native Potato Landraces from the Influence Zone of Camisea Gas Project, Northern Ayacucho, Peru. Am. J. Potato Res. 97, 143–161 (2020). https://doi.org/10.1007/s12230-020-09763-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09763-7

Keywords

Navigation