Log in

Synthesis and Characterization of the Temperature Controllable Shape Memory of Polycaprolactone/Poly(ethylene terephthalate) Copolyester

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a series of novel controllable shape-memory polymers composed of poly(ethylene terephthalate) (PET) and poly(ε-caprolactone) (PCL) were synthesized using the one-pot method and were spun using the melt spinning process. The chemical structure and composition, thermal properties, crystallization properties, mechanical properties, and shape-memory behavior of these copolymers were characterized. The results revealed that the incorporation of a flexible PCL segment achieved random copolymers. The aliphatic PCL segment decreased the melting point, crystallinity, and glass transition temperature. The thermal stability of the synthesized PET-co-PCLs was higher than that of the blended polymers, and the decomposition temperature of PET-co-PCL-30 % reached 377.2 °C. The shape recovery ratio of PET-co-PCL-30 % was between 38.32 % and 82.69 % and was temperature dependent. The as-spun PET and PET-co-PCL fibers were melt spun at a winding rate of 1,000 m/min. The strength values of the fibers ranged from 2.16 to 1.2 gf/den depending on the increase in PCL content. Because of the biocompatibility of both PET and PCL and the shape-memory features of these copolyesters, PET-co-PCL fibers can be applied in intelligent textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Mouzakis, N. Papke, J. S. Wu, and J. Karger-Kocsis, J. Appl. Polym. Sci., 79, 842 (2001).

    Article  CAS  Google Scholar 

  2. N. Jacquel, R. Saint-Loup, J. P. Pascault, A. Rousseau, and F. Fenouillot, Polym., 59, 234 (2015).

    Article  CAS  Google Scholar 

  3. W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013).

    Article  CAS  Google Scholar 

  4. J. Wang, X. Liu, Y. Zhang, F. Liu, and J. Zhu, Polymer, 103, 1 (2016).

    Article  CAS  Google Scholar 

  5. J. J. Benvenuta Tapia, J. A. Tenorio-López, A. Martínez-Estrada, and C. Guerrero-Sánchez, Mater. Chem. Phys., 229, 474 (2019).

    Article  CAS  Google Scholar 

  6. M. Ren, Z. Zhang, S. Wu, J. Wei, and C. **ao, J. Polym. Res., 13, 9 (2006).

    Article  CAS  Google Scholar 

  7. J. Zhou, Q. Zhu, W. Pan, H. **ang, Z. Hu, and M. Zhu, Macromol. Rapid Commun., 42, 2000498 (2021).

    Article  CAS  Google Scholar 

  8. V. Sinha, M. R. Patel, and J. V. Patel, J. Polym. Environ., 18, 8 (2010).

    Article  CAS  Google Scholar 

  9. J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou, and P. Purnell, J. Hazard Mater, 344, 179 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. S. J. Kim, H. W. Kwak, S. Kwon, H. Jang, and S. Park, Polymers, 12, 2389 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  11. D. I. Collias, A. M. Harris, V. Nagpal, I. W. Cottrell, and M. W. Schultheis, Ind. Biotechnol., 10, 91 (2014).

    Article  CAS  Google Scholar 

  12. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005).

    Article  CAS  Google Scholar 

  13. T. A. Hottle, M. M. Bilec, and A. E. Landis, Polym. Degrad. Stab., 98, 1898 (2013).

    Article  CAS  Google Scholar 

  14. T. Iwata, Angew. Chem. Int. Ed., 54, 3210 (2015).

    Article  CAS  Google Scholar 

  15. A. L. Sisson, D. Ekinci, and A. Lendlein, Polym., 54, 4333 (2013).

    Article  CAS  Google Scholar 

  16. Y. Makino and T. Hirata, Postharvest Biol. Technol., 10, 247 (1997).

    Article  CAS  Google Scholar 

  17. T. Y. Shih, J. D. Yang, and J. H. Chen, Procedia Eng., 36, 144 (2012).

    Article  CAS  Google Scholar 

  18. M. Jikei, Y. Takeyama, Y. Yamadoi, N. Shinbo, K. Matsumoto, M. Motokawa, K. Ishibashi, and F. Yamamoto, Polym. J., 47, 657 (2015).

    Article  CAS  Google Scholar 

  19. N. Stanley, G. Bucataru, Y. Miao, A. Favrelle, M. Bria, F. Stoffelbach, P. Woisel, and P. Zinck, J. Polym. Sci. Part A Polym. Chem., 52, 2139 (2014).

    Article  CAS  Google Scholar 

  20. F. Awaja and D. Pavel, Eur. Polym. J., 41, 1453 (2005).

    Article  CAS  Google Scholar 

  21. M. Y. Abdelaal, T. R. Sobahi, M. S. I. Makki, Int. J. Polym. Mater., 57, 73 (2008).

    Article  CAS  Google Scholar 

  22. K. Y. Lim, B. C. Kim, and K. J. Yoon, J. Appl. Polym. Sci., 88, 131 (2003).

    Article  CAS  Google Scholar 

  23. K. Y. Lim, B. C. Kim, and K. J. Yoon, Polym. J., 34, 313 (2002).

    Article  CAS  Google Scholar 

  24. D. Saaoui, S. Benali, R. Mincheva, A. Habi, P. Dubois, and J. Raquez, J. Appl. Polym. Sci., 137, 48812 (2020).

    Article  CAS  Google Scholar 

  25. K. Saeed and S. Park, Iran J. Chem. Chem. Eng., 29, 77 (2010).

    Google Scholar 

  26. C. Japu, A. Martínez De Ilarduya, A. Alla, Y. Jiang, and K. Loos, Biomacromol., 16, 868 (2015).

    Article  CAS  Google Scholar 

  27. U. Wit, R. J. Müller, J. Augusta, H. Widdecke, and W. D. Deckwer, Macromol. Chem. Phys., 195, 793 (1994).

    Article  Google Scholar 

  28. Y. Nakayama, W. Yagumo, R. Tanaka, T. Shinon, K. Inumaru, C. Tsutsumi, N. Kawasaki, and N. Yamano, Polym. Degrad. Stab., 174, 109095 (2020).

    Article  Google Scholar 

  29. H. S. Park, J. A. Seo, H. Y. Lee, H. W. Kim, I. B. Wall, M. S. Gong, and J. C. Knowles, Acta Biomater., 8, 2911 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. P. A. Wilbon, J. L. Swartz, N. R. Meltzer, J. P. Brutman, M. A. Hillmyer, and J. E. Wissinger, ACS Sustain Chem. Eng., 5, 9185 (2017).

    Article  CAS  Google Scholar 

  31. M. Soccio, L. Finelli, N. Lotti, M. Gazzano, and A. Munari, Eur. Polym. J., 42, 2949 (2006).

    Article  CAS  Google Scholar 

  32. Z. Y. Yang, Y. L. Chou, H. C. Yang, C. W. Chen, and S. P. Rwei, J. Renewable Mater., 9, 867 (2021).

    Article  CAS  Google Scholar 

  33. F. W. Billmeyer Jr., J. Polym. Sci., 4, 83 (1949).

    Article  CAS  Google Scholar 

  34. M. Qu, H. Wang, Q. Chen, L. Wu, P. Tang, M. Fan, Y. Guo, H. Fan, and Y. Bin, Chem. Eng. J., 427, 131648 (2022).

    Article  CAS  Google Scholar 

  35. K. Espinoza-García, A. Marcos-Fernández, R. Navarro, A. Ramírez-Hernández, J. E. Báez-García, and G. Rangel-Porras, J. Polym. Res., 26, 180 (2019).

    Article  Google Scholar 

  36. N. Heidarzadeh, M. Rafizadeh, F. A. Taromi, L. J. del Valle, L. Franco, and J. Puiggalí, Polym. Degrad. Stab., 135, 18 (2017).

    Article  CAS  Google Scholar 

  37. H. Y. Du, L. W. Liu, F. H. Zhang, J. S. Leng, and Y. J. Liu, Compos. Part B, 173, 106935 (2019).

    Article  Google Scholar 

  38. X. Qi, H. **u, Y. Wei, Y. Zhou, Y. Guo, R. Huang, H. Bai, and Q. Fu, Compos. Sci. Technol., 139, 8 (2017).

    Article  CAS  Google Scholar 

  39. W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, Nature, 554, 81 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. H. **e, M. He, X.-Y. Deng, L. Du, C.-J. Fan, K.-K. Yang, and Y.-Z. Wang, ACS Appl. Mater. Interfaces, 8, 9431 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. X. Qi, X. Yao, S. Deng, T. Zhou, and Q. Fu, J. Mater. Chem. A, 2, 2040 (2014).

    Article  Google Scholar 

  42. W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, and I. Willner, Adv. Mater., 27, 73 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. A. Lendlein and S. Kelch, Angew. Chem. Int. Ed., 41, 2034 (2002).

    Article  CAS  Google Scholar 

  44. Y. J. Choi, B. K. Kim, and H. M. Jeong, Polym. (Korea), 22, 131 (1998).

    CAS  Google Scholar 

  45. M. Naddeo, A. Sorrentino, and A. Pappalardo, Polymers, 13, 627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Tonndorf, D. Aibibu, and C. Cherif, Polymers, 12, 2989 (2021).

    Article  Google Scholar 

  47. S. P. Rwei and W. P. Lin, Text. Res. J., 85, 1691 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Ting Yang or Syang-Peng Rwei.

Ethics declarations

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, FT., Chen, YM. & Rwei, SP. Synthesis and Characterization of the Temperature Controllable Shape Memory of Polycaprolactone/Poly(ethylene terephthalate) Copolyester. Fibers Polym 23, 2526–2538 (2022). https://doi.org/10.1007/s12221-022-0005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-0005-x

Keywords

Navigation