Log in

Scattering of particles from a solid surface: the impulsive model of composite encounters

  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

We propose a general impulsive model for scattering of molecules from a flat solid surface. It is assumed within the framework of this model that an encounter of an atom (or ion) with the surface is a series of elastic (in the direction normal to the surface) hits of the atom against surface pseudoparticles, the hits instantly following each other. To each atom, one assigns two infinite sequences of masses of pseudoparticles. The model is a far-reaching generalization of the well-known hard cube model. Criteria for both finiteness and infinity of series of hits are formulated, based on the masses of pseudoparticles and the mass of the atom. It is shown that in virtually all the cases, any number of hits in a series occurs with a positive probability. The proposed model does not satisfy the reciprocity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azriel VM, Akimov VM, Ermolova EV, Kolesnikova LI, Rusin LYu, Sevryuk MB (2018) Dissociation of potassium iodide at a graphite surface within the framework of an impulsive model. Russ J Phys Chem B 12:1082–1093

    Article  CAS  Google Scholar 

  • Azriel VM, Akimov VM, Kolesnikova LI, Rusin LYu, Sevryuk MB (2019) General impulsive models of scattering of molecules from a solid surface without tangential forces. Phys Chem Kinet Gas Dyn 20. http://chemphys.edu.ru/issues/2019-20-1/articles/793/. Accessed 17 Aug 2019. (47 pages, in Russian)

  • Bärwinkel K, Rottmann L (1993) A model for irreversible scattering of gas atoms on a metal surface. Surf Sci 287/288:35–38

    Article  Google Scholar 

  • Cercignani C (1972) Scattering kernels for gas–surface interactions. Transp Theor Stat Phys 2:27–53

    Article  CAS  Google Scholar 

  • Doll JD (1973) Simple classical model for the scattering of diatomic molecules from a solid surface. J Chem Phys 59:1038–1042

    Article  CAS  Google Scholar 

  • Dorenkamp Y, Volkmann C, Roddatis V, Schneider S, Wodtke AM, Bünermann O (2018) Inelastic H atom scattering from ultrathin aluminum oxide films grown by atomic layer deposition on Pt(111). J Phys Chem C 122:10096–10102

    Article  CAS  Google Scholar 

  • Goodman FO (1965) On the theory of accommodation coefficients-IV. Simple distribution function theory of gas–solid interaction systems. J Phys Chem Solids 26:85–105

    Article  CAS  Google Scholar 

  • Grimmelmann EK, Tully JC, Cardillo MJ (1980) Hard-cube model analysis of gas–surface energy accommodation. J Chem Phys 72:1039–1043

    Article  CAS  Google Scholar 

  • Kleyn AW (2008) Basic mechanisms in atom–surface interactions. In: Hasselbrink E, Lundqvist BI (eds) Handbook of surface science, vol 3. Elsevier Science, Amsterdam, pp 29–52

    Google Scholar 

  • Kuščer I (1971) Reciprocity in scattering of gas molecules by surfaces. Surf Sci 25:225–237

    Article  Google Scholar 

  • Liang T, Li Q, Ye W (2018) A physical-based gas–surface interaction model for rarefied gas flow simulation. J Comput Phys 352:105–122

    Article  CAS  Google Scholar 

  • Livingston Large TA, Nesbitt DJ (2019) Quantum state and Doppler-resolved scattering of thermal/hyperthermal DCl at the gas-liquid interface: support for a simple “lever arm” model of the energy-transfer dynamics. J Phys Chem C 123:3449–3460

    Article  CAS  Google Scholar 

  • Logan RM, Keck JC (1968) Classical theory for the interaction of gas atoms with solid surfaces. J Chem Phys 49:860–876

    Article  CAS  Google Scholar 

  • Logan RM, Stickney RE (1966) Simple classical model for the scattering of gas atoms from a solid surface. J Chem Phys 44:195–201

    Article  CAS  Google Scholar 

  • Majumder M, Bhandari HN, Pratihar S, Hase WL (2018) Chemical dynamics simulation of low energy \({\rm N}_2\) collisions with graphite. J Phys Chem C 122:612–623

    Article  CAS  Google Scholar 

  • Mateljevic N, Kerwin J, Roy S, Schmidt JR, Tully JC (2009) Accommodation of gases at rough surfaces. J Phys Chem C 113:2360–2367

    Article  CAS  Google Scholar 

  • Patil SH (1987) Interionic potentials in alkali halides. J Chem Phys 86:313–320

    Article  CAS  Google Scholar 

  • Sipkens TA, Daun KJ (2017) Using cube models to understand trends in thermal accommodation coefficients at high surface temperatures. Int J Heat Mass Transf 111:54–64

    Article  Google Scholar 

  • Steinbrüchel C (1980) The hard-spheroid model for gas–surface interactions. Chem Phys Lett 76:58–61

    Article  Google Scholar 

  • Steinbrüchel C (1982) Gas–surface scattering distributions according to the hard-spheroid model. Surf Sci 115:247–258

    Article  Google Scholar 

  • Tully JC (1990) Washboard model of gas–surface scattering. J Chem Phys 92:680–686

    Article  CAS  Google Scholar 

  • **a L-Q, Engstrom JR (1994) The role of surface corrugation in direct translationally activated dissociative adsorption. J Chem Phys 101:5329–5342

    Article  CAS  Google Scholar 

  • Yan T, Hase WL, Tully JC (2004) A washboard with moment of inertia model of gas–surface scattering. J Chem Phys 120:1031–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financed only from the state budget of the Russian Federation and was carried out within the framework of the Program of fundamental scientific research of the state academies of sciences of the Russian Federation for 2013–2020, the theme being “Fundamental physical–chemical processes of the impact of energy objects on the environment and living systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail B. Sevryuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, V.M., Azriel, V.M., Kolesnikova, L.I. et al. Scattering of particles from a solid surface: the impulsive model of composite encounters. Rend. Fis. Acc. Lincei 30, 785–795 (2019). https://doi.org/10.1007/s12210-019-00850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-019-00850-4

Keywords

Navigation