Log in

Comparative Experimental and Analytical Modeling of Impact Energy Dissipation of Ultra-High Performance Fibre Reinforced Concrete

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This study examines the impact energy dissipation capacity of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). For this purpose, nine different mixes were fabricated with hooked end and crimped steel fibres at a dosage of 0.5, 1.0, 1.5 and 2.0 percentage and tested under pendulum impact test. The impact energy dissipation capacity is assessed based on test (Charpy U-notch) procedure suggested by ASTM E23. Also, an analytical model was adopted to predict the impact energy dissipation value of UHPFRC and its performance is verified against experimental results. Based on the test results, the impact energy dissipation capacity of the mixtures containing crimped and hooked end steel fibres were significantly higher than that of Plain Concrete (PC). The hooked end steel fibres had an increased impact energy dissipation capacity compared to crimped steel fibres, which implies that hooked end steel fibre is more appropriate for enhancing the impact energy dissipation of UHPFRC. Also, the modelling data compared well with experimental data for the fibre volume fraction beyond 0.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinacchio, M., Ciampa, D., and Olita, S. (2013). “The vibrations induced by surface irregularities in road pavements – a Matlab approach.” European Transport Research Review, Vol. 6, No. 3, pp. 267–275, DOI: 10.1007/s12544-013-0127-8.

    Article  Google Scholar 

  • Aldahdooh, M. A. A., Bunnori, N. M., and Johari, M. A. M. (2013). “Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash.” Construction and Building Materials, Vol. 48, pp. 379–389, DOI: 10.1016/j.conbuildmat.2013.07.007.

    Article  Google Scholar 

  • Alemdar, F. and Sezen, H. (2010). “Shear behaviour of exterior reinforced concrete beam-column joints.” Structural Engineering and Mechanics, Vol. 35, No. 1, pp. 123–126, DOI: 10.12989/sem.2010.35.1.123.

    Article  Google Scholar 

  • Alwan, J. M., Naaman, A. E., and Hansen, W. (1991). “Pull-out work of steel fibers from cementitious composites: Analytical investigation.” Cement Concrete Composites, Vol. 13, No. 4, pp. 247–255, DOI: 10.1016/0958-9465(91)90030-L.

    Article  Google Scholar 

  • Anil, O., Durucan, C., Tugrul Erdem, R., and Arif Yorgancilar, M. (2016). “Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading.” Construction and Building Materials, Vol. 125, pp. 94–104, DOI: 10.1016/j.conbuildmat.2016.08.028.

    Article  Google Scholar 

  • ASTME23 (1992). Standard test methods for notched bar impact testing of metallic materials, American Society for Testing and Materials.

    Google Scholar 

  • Bragov, A. M., Petrov, Y. V., Karihaloo, B. L., Konstantinov, A. Y., Lamzin, D. A., Lomunov, A. K., and Smirnov, I. V. (2013). “Dynamic strengths and toughness of an ultra-high performance fibre reinforced concrete.” Engineering Fracture Mechanics, Vol. 110, pp. 477–488, DOI: 10.1016/j.engfracmech.2012.12.019.

    Article  Google Scholar 

  • Caverzan, A., Cadoni, E., and Prisco, M. (2013). “Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure.” Mechanics of Materials, Vol. 59, pp. 87–109.

    Article  Google Scholar 

  • Chawla, K. K. (1997). “Composite materials science and engineering.” New York: Springer-Verlag, pp. 234–236.

    Google Scholar 

  • Collepardi, S., Coppola, L., Troli, R., and Collepardi, M. (1997). “Mechanical properties of modified reactive powder concrete.” ACI Special Publication, Vol. 173, pp. 1–22.

    Google Scholar 

  • El-Dieb, A. S. (2009). “Mechanical, durability and microstructural characteristics of ultrahigh-strength self-compacting concrete incorporating steel fibres.” Material Design, Vol. 30, pp. 4286–4292, DOI: 10.1016/j.matdes.2009.04.024.

    Article  Google Scholar 

  • Favre, J. P, Desarmot, G., Sudre, O., and Vassel, A. (1997). “Were McGarry or Shiriajeva right to measure glass–fiber adhesion?.” Composite Interfaces, Vol. 4, pp. 313–326, DOI: 10.1163/156855497X00064.

    Article  Google Scholar 

  • Hassan, A. M. T., Jones, S. W., and Mahmud, G. H. (2012). “Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra-high Performance Fibre Reinforced Concrete (UHPFRC).” Construction and Building Materials, Vol. 37, pp. 874–882, DOI: 10.1016/j.conbuildmat.2012.04.030.

    Article  Google Scholar 

  • Heckotter, C. and Sievers, J. (2013). “Simulation of impact tests with hard, soft and liquid filled missiles on reinforced concrete structures.” Journal of Applied Mechanics, Vol. 80, No. 3, pp. 1–7, DOI: 10.1115/1.4023391.

    Article  Google Scholar 

  • Hsueh, C. H. (1996). “Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites.” Acta Materialia, Vol. 44, No. 6, pp. 2211–2216, DOI: 10.1016/1359-6454(95)00369-X.

    Article  Google Scholar 

  • IS: 456-2000, Indian Standard Plain and reinforced concrete-Code of practice (Fourth Revision).

  • Kanda, T. and Li, V. C. (1998). “Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix.” Journal of Materials in Civil Engineering, Vol. 10, No. 1, pp. 5–13.

    Article  Google Scholar 

  • Kanda, T. and Li, V. C. (2006). “Practical design criteria for saturated pseudo strain hardening behavior in ECC.” Japan Advanced Concrete Technology, Vol. 4, No. 1, pp. 59–72.

    Article  Google Scholar 

  • Kang, S. T. and Kim, J. K. (2011). “The relation between fibre orientation and tensile behavior in an Ultra-High Performance Fibre Reinforced Cementitious Composites (UHPFRCC).” Cement Concrete Research, Vol. 41, pp. 1001–1014, DOI: 10.1016/j.cemconres.2011.05.009.

    Article  Google Scholar 

  • Kang, S. T. and Kim, J. K. (2012). “Numerical simulation of the variation of fibre orientation distribution during flow molding of Ultra-High Performance Cementitious Composites (UHPCC).” Cement Concrete Composites, Vol. 34, pp. 208–17, DOI: 10.1016/j.cemconcomp.2011.09.015.

    Article  Google Scholar 

  • Kim, D. J., Park, S. H., Ryu, G. S., and Koh, K. T. (2011). “Comparative flexural behavior of Hybrid Ultra-High Performance Fibre Reinforced Concrete with different macro fibres.” Construction and Building Materials, Vol. 25, pp. 4144–4155, DOI: 10.1016/j.conbuildmat. 2011.04.051.

    Article  Google Scholar 

  • Leung, C. K. Y. and Geng, Y. (1995). “Effect of lateral stresses on fiber debonding/pull-out.” Composites Engineerng, Vol. 5, No. 10, pp. 1331–1348, DOI: 10.1016/0961-9526(95)00064-T.

    Article  Google Scholar 

  • Mao, L., Barnett, S., Begg, D., Schleyer, G., and Wight, G. (2013). “Numerical simulation of ultrahigh performance fibre reinforced concrete panel subjected to blast loading.” International Journal of Impact Engineering, Vol. 64, No. 2, pp. 91–100, DOI: 10.1016/j.ijimpeng.2013.10.003.

    Google Scholar 

  • Millard, S. G., Molyneaux, T. C. K., Barnett, S. J., and Gao, X. (2009). “Dynamic enhancement of blast resistant ultra-high performance fibre-reinforced concrete under flexural and shear loading.” International Journal of Impact Engineering, Vol. 37, pp. 405–413, DOI: 10.1016/j.ijimpeng.2009.09.004.

    Article  Google Scholar 

  • Murali, G. and Chandana, V. (2017-b). “Weibull reliability analysis of impact resistance on self-compacting Concrete reinforced with recycled CFRP pieces.” Romanian Journal of Materials, Vol. 47, No. 2, pp. 196–203.

    Google Scholar 

  • Murali, G., Gayathri, R., Ramkumar, V. R., and Karthikeyan, K. (2017-a). “Two statistical scrutinize of impact strength and strength reliability of steel fibre-reinforced concrete.” KSCE Journal of Civil Engineering, pp. 1–13, DOI: 10.1007/s12205-017-1554-1.

    Google Scholar 

  • Murali, G., Santhi, A. S., and Mohan Ganesh, G. (2014). “Impact resistance and strength reliability of Fiber-reinforced concrete in bending under drop weight impact load.” International Journal of Technology, Vol. 5, No. 2, pp. 111–120, DOI: 10.14716/ijtech.v5i2.403.

    Article  Google Scholar 

  • Murali, G., Santhi, A. S., and Mohan Ganesh, G. (2016). “Loss of mechanical properties of fiber-reinforced concrete exposed to impact load.” Romanian Journal of Materials, Vol. 46, No. 4, pp. 491–496.

    Google Scholar 

  • Ona, M., Morales-Alonso, G., Galvez, F., Sanchez-Galvez, V., and Cendon, D. (2016). “Analysis of concrete targets with different kinds of reinforcements subjected to blast loading.” The European Physical Journal Special Topics, Vol. 225, pp. 265–282, DOI: 10.1140/epjst/e2016-02633-8.

    Article  Google Scholar 

  • Park, S. H., Kim, D. J., Ryu, G. S., and Koh, K. T. (2012). “Tensile behaviour of ultra-high-performance hybrid fibre reinforced concrete.” Cement Concrete Composites, Vol. 34, pp. 172–184, DOI: 10.1016/j.cemconcomp.2011.09.009.

    Article  Google Scholar 

  • Ranade, R., Li, V. C., Heard, W. F., and Williams, B. A. (2017). “Impact resistance of high strength-high ductility concrete.” Cement and Concrete Research, Vol. 98, pp. 24–35, DOI: 10.1016/j.cemconres.2017.03.013.

    Article  Google Scholar 

  • Rong, Z. and Sun, W. (2012). “Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites.” Construction and Building Materials, Vol. 31, pp. 168–173, DOI: 10.1016/j.conbuildmat.2011.12.058.

    Article  Google Scholar 

  • Rong, Z., Sun, W., and Zhang, Y. (2010). “Dynamic compression behavior of ultra-high-performance cement based composites.” International Journal of Impact Engineering, Vol. 37, pp. 515–520, DOI: 10.1016/j.ijimpeng.2009.11.005.

    Article  Google Scholar 

  • Rossi, P. (2013). “Influence of fibre geometry and matrix maturity on the mechanical performance of ultra-high-performance cementbased composites.” Cement Concrete Composites, Vol. 37, pp. 246–248, DOI: 10.1016/j.cemconcomp.2012.08.005.

    Article  Google Scholar 

  • Soetens, T., Gysel, A. V., and Taerwe, M. L. (2013). “A semi-analytical model to predict the pullout behaviour of inclined hooked-end steel fibres.” Construction and Building Materials, Vol. 43, pp. 253–265, DOI: 10.1016/j.conbuildmat.2013.01.034.

    Article  Google Scholar 

  • Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., and Voo, Y. L. (2012). “Mechanical and permeability properties of the interface between normal concrete substrate and Ultra-high Performance Fibre concrete overlay.” Construction and Building Materials, Vol. 36, pp. 538–548, DOI: 10.1016/j.conbuildmat.2012.06.013.

    Article  Google Scholar 

  • Tran, T. K. and Kim, D. J. (2014). “High strain rate effects on direct tensile behavior of high performance fibre reinforced cementitious composites.” Cement Concrete Composites, Vol. 45, pp. 186–200, DOI: 10.1016/j.cemconcomp.2013.10.005.

    Article  Google Scholar 

  • Tuan, N. V., Ye, G., Breugel, K., and Copuroglu, O. (2011). “Hydration and microstructure of ultrahigh performance concrete incorporating rice husk ash.” Cement Concrete Research, Vol. 41, pp. 1104–1111, DOI: 10.1016/j.cemconres.2011.06.009.

    Article  Google Scholar 

  • Tuan, N. V., Ye, G., Breugel, K., Fraaij, A. L. A., and Dai, B. D. (2011). “The study of using rice husk ash to produce ultra-high performance concrete.” Construction and Building Materials, Vol. 25, pp. 2030–2035, DOI: 10.1016/j.conbuildmat.2010.11.046.

    Article  Google Scholar 

  • Vejmelková, E., Keppert, M., Rovnaníková, P., Ondrácek, M., Keršner, Z., and Cerny, R. (2012). “Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material.” Cement and Concrete Composites, Vol. 34, pp. 55–61, DOI: 10.1016/j.cemconcomp.2011.09.018.

    Article  Google Scholar 

  • Verma, M., Prem, P. R., Rajasankar, J., and Bharatkumar, B. H. (2016). “On low-energy impact response of Ultra-high-performance Concrete (UHPC) panels.” Materials and Design, Vol. 92, pp. 853–865, DOI: 10.1016/j.matdes.2015.12.065.

    Article  Google Scholar 

  • Wang, S., Zhang, M., and Quek, S. (2012). “Mechanical behavior of fibre-reinforced high strength concrete subjected to high strain-rate compressive loading.” Construction and Building Materials, Vol. 31, pp. 1–11, DOI: 10.1016/j.conbuildmat.2011.12.083.

    Article  Google Scholar 

  • Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., and Whittaker, A. (2009). “Blast testing of ultrahigh performance fibre and FRPretrofitted concrete slabs.” Engineering Structures, Vol. 31, No. 9, pp. 2060–2069, DOI: 10.1016/j.engstruct.2009.03.020.

    Article  Google Scholar 

  • Xu, B., Toutanji, H. A., and Gilbert, J. (2010). “Impact resistance of poly (vinyl alcohol) fiber reinforced high-performance organic aggregate cementitious material.” Cement Concrete Research, Vol. 40, pp. 347–351, DOI: 10.1016/j.cemconres.2009.09.006.

    Article  Google Scholar 

  • Yang, I. H., Joh, C., and Kim, B. S. (2010). “Structural behavior of ultrahigh performance concrete beams subjected to bending.” Engineering Structures, Vol. 32, pp. 3478–3487, DOI: 10.1016/j.engstruct.2010. 07.017.

    Article  Google Scholar 

  • Yang, S. L., Millard, S. G., Soutsos, M. N., Barnett, S. J., and Le, T. T. (2009). “Influence of aggregate and curing regime on the mechanical properties of Ultra-high Performance Fibre Reinforced Concrete (UHPFRC).” Construction and Building Materials, Vol. 23, pp. 2291–2298, DOI: 10.1016/j.conbuildmat.2008.11.012.

    Article  Google Scholar 

  • Yi, N. H., Kim, J. H. J., Han, T. S., Cho, Y. G., and Lee, J. H. (2012). “Blast-resistant characteristics of ultrahigh strength concrete and reactive powder concrete.” Construction and Building Materials, Vol. 28, pp. 694–707, DOI: 10.1016/j.conbuildmat.2011.09.014.

    Article  Google Scholar 

  • Yu, R., Spiesz, P., and Brouwers, H. J. H. (2014). “Static properties and impact resistance of a green Ultra-High-Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling.” Construction and Building Materials, Vol. 68, pp. 158–171, DOI: 10.1016/j.conbuildmat.2014.06.033.

    Article  Google Scholar 

  • Yu, R., Spiesz, P., and Brouwers, H. J. H. (2016). “Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact.” Cement and Concrete Composites, Vol. 68, pp. 109–122, DOI: 10.1016/j.cemconcomp.2016.02.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, G., Venkatesh, J., Lokesh, N. et al. Comparative Experimental and Analytical Modeling of Impact Energy Dissipation of Ultra-High Performance Fibre Reinforced Concrete. KSCE J Civ Eng 22, 3112–3119 (2018). https://doi.org/10.1007/s12205-017-1678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1678-3

Keywords

Navigation