Log in

Comprehensive Analysis of Beidou-3 PPP-B2b Performance Based on Adaptive Robust Extend Kalman Filter

基于自适应鲁棒扩展卡尔曼滤波器的北斗三号PPP-B2b性能综合分析

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Beidou-3 navigation satellite system (BDS-3) initiated a real-time service for precise point positioning (PPP) using the B2b signal, mainly for users in China and surrounding areas. In this paper, the performance of PPP-B2b service is experimentally analyzed first. Then, the ionosphere-free model is established. In order to solve the problem of slow convergence for traditional PPP, an adaptive robust extend Kalman filter (AREKF) algorithm is developed. Unlike the error compensation models, it reflects the noise information in real time by adjusting the covariance matrix of the measurements and the weight matrix of the state vector. The experimental results are analyzed last. Evaluation results indicate that the corrections provided by PPP-B2b can significantly reduce the discontinuous error of the orbits and clock offsets caused by broadcast ephemeris updating. Positioning results confirm that AREKF outperforms EKF both in static and kinematic modes. Around 20% improvement in accuracy and 25% improvement in convergence speed are achieved, making it valuable for PPP processing.

摘要

北斗三号导航系统使用B2b信号为**及周边地区的用户提供实时精确点定位服务(PPP)。本文首先对PPP-B2b服务的性能进行了实验分析, 然后建立无电离层模型。为了解决PPP收敛慢的传统问题, 开发了一种自适应鲁棒扩展卡尔曼滤波(AREKF)算法。与误差补偿模型不同, 它通过调整测量值的协方差矩阵和状态向量的权重矩阵实时反映噪声信息。最后, 对实验结果进行了分析。实验评估结果表明, PPP-B2b校**可以显着降低广播星历更新引起的轨道和时钟的不连续性误差。定位结果表明, AREKF在静态和仿动态条件下均优于EKF。精确度提高了约20%, 收敛速度提升了约25%, 这对PPP的研究具有重要价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SU C G, GUO S R, LIU X N, et al. Signal quality assessment of BDS-3 preliminary system [J]. Journal of Electronics & Information Technology, 2020, 42(11): 2689–2697 (in Chinese).

    Google Scholar 

  2. LIU W P, HAO J M, LU Z W, et al. Evaluation and comparative analysis of BDS-3 signal-in-space range error [J]. Acta Geodetica et Cartographica Sinica, 2020, 49(9): 1213–1221 (in Chinese).

    Google Scholar 

  3. LV Y F, GENG T, ZHAO Q L, et al. Characteristics of Beidou-3 experimental satellite clocks [J]. Remote Sensing, 2018, 10(11): 1847.

    Article  Google Scholar 

  4. KAZMIERSKI K, ZAJDEL R, SOSNICA K. Evolution of orbit and clock quality for real-time multi-GNSS solutions [J]. GPS Solutions, 2020, 24(4): 111.

    Article  Google Scholar 

  5. ZHANG W J, YANG H Z, HE C, et al. Initial performance evaluation of precise point positioning with triple-frequency observations from BDS-2 and BDS-3 satellites [J]. Journal of Navigation, 2020, 73(4): 763–775.

    Article  Google Scholar 

  6. PAN L, LI X P, YU W K, et al. Performance evaluation of real-time precise point positioning with both BDS-3 and BDS-2 observations [J]. Sensors, 2020, 20(21): 6027.

    Article  Google Scholar 

  7. YANG Y X, DING Q, GAO W G, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3 [J]. Satellite Navigation, 2022, 3(1): 5.

    Article  Google Scholar 

  8. LU X C, CHEN L, SHEN N, et al. Decoding PPP corrections from BDS B2b signals using a software-defined receiver: An initial performance evaluation [J]. IEEE Sensors Journal, 2021, 21(6): 7871–7883.

    Article  Google Scholar 

  9. TAO J, LIU J N, HU Z G, et al. Initial assessment of the BDS-3 PPP-B2b RTS compared with the CNES RTS [J]. GPS Solutions, 2021, 25(4): 131.

    Article  Google Scholar 

  10. ZHANG X H, LI X X, LI P. Review of GNSS PPP and its application [J]. Acta Geodetica et Cartographica Sinica, 2017, 46(10): 1399–1407 (in Chinese).

    Google Scholar 

  11. ZHENG Z Y, DANG Y M, LU X S, et al. Analysis of factors affecting convergence time and measure in GPS precise point positioning [J]. Journal of Geodesy and Geodynamics, 2009, 29(5): 107–111 (in Chinese).

    Google Scholar 

  12. GUO H L. Research on the improved convergence for GNSS precise point positioning [D]. Wuhan: Wuhan University, 2018 (in Chinese).

    Google Scholar 

  13. ZHU H Z, YANG T Y, ZHAO H T, et al. GNSS multisystem precise point positioning method and performance analysis [J]. Science of Surveying and Map**, 2020, 45(12): 1–7 (in Chinese).

    Google Scholar 

  14. ZHANG B C, HOU P Y, LIU T, et al. A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables [J]. Journal of Geodesy, 2020, 94(4): 37.

    Article  Google Scholar 

  15. WU J F, HUANG C. GPS precise point positioning models and their utility analysis [J]. Journal of Geodesy and Geodynamics, 2008, 28(1): 96–100 (in Chinese).

    MathSciNet  Google Scholar 

  16. QIN H L, LIU P, CONG L, et al. Triple-frequency combining observation models and performance in precise point positioning using real BDS data [J]. IEEE Access, 2019, 7: 69826–69836.

    Article  Google Scholar 

  17. BROWN R G, HWANG P Y C. Introduction to random signals and applied Kalman filtering: With MAT-LAB exercises [M]. 4th ed. Hoboken: Wiley, 2012.

    Google Scholar 

  18. ZHAO L, ZHANG S Z, LI L, et al. BDS/GPS integrated precise point positioning based on adaptive extended Kalman filter [J]. Systems Engineering and Electronics, 2016, 38(9): 2142–2148 (in Chinese).

    Google Scholar 

  19. ELMEZAYEN A, EL-RABBANY A. Real-time GNSS precise point positioning using improved robust adaptive Kalman filter [J]. Survey Review, 2021, 53(381): 528–542.

    Article  Google Scholar 

  20. LIU Y, YANG C, ZHANG M N. Comprehensive analyses of PPP-B2b performance in China and surrounding areas [J]. Remote Sensing, 2022, 14(3): 643.

    Article  Google Scholar 

  21. SHI Y S, HAO J M, LIU W P, et al. Performance assessment of BDS real-time precise point positioning based on SSR corrections [J]. Journal of Surveying Engineering, 2019, 145(4): 05019003.

    Article  Google Scholar 

  22. REN Z L, GONG H, PENG J, et al. Performance assessment of real-time precise point positioning using BDS PPP-B2b service signal [J]. Advances in Space Research, 2021, 68(8): 3242–3254.

    Article  Google Scholar 

  23. MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Broadcast versus precise ephemerides: A multi-GNSS perspective [J]. GPS Solutions, 2015, 19(2): 321–333.

    Article  Google Scholar 

  24. YANG Y, HE H, XU G. Adaptively robust filtering for kinematic geodetic positioning [J]. Journal of Geodesy, 2001, 75(2): 109–116.

    Article  MATH  Google Scholar 

  25. GERDAN G P. A comparison of four methods of weighting double difference pseudorange measurements [J]. Australian Surveyor, 1995, 40(4): 60–66.

    Article  Google Scholar 

  26. WANG W, WANG Y P, YU C, et al. Spaceborne atomic clock performance review of BDS-3 MEO satellites [J]. Measurement, 2021, 175: 109075.

    Article  Google Scholar 

  27. LV Y F, GENG T, ZHAO Q L, et al. Initial assessment of BDS-3 preliminary system signal-in-space range error [J]. GPS Solutions, 2020, 24(1): 16.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank SinoGNSS for their board, and Tang Haibo for his useful suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchu Mao  (茅旭初).

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Mao, X. Comprehensive Analysis of Beidou-3 PPP-B2b Performance Based on Adaptive Robust Extend Kalman Filter. J. Shanghai Jiaotong Univ. (Sci.) (2023). https://doi.org/10.1007/s12204-023-2664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-023-2664-1

Key words

关键词

CLC number

Document code

Navigation