Log in

USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation

  • Article
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Automatic segmentation of ischemic stroke lesions from computed tomography (CT) images is of great significance for identifying and curing this life-threatening condition. However, in addition to the problem of low image contrast, it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data. Considering that it is difficult to obtain stroke data and labels, a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation. A deep convolutional neural network based algorithm for stroke lesion segmentation, called structural similarity with light U-structure (USSL) Net, was proposed. We embedded a convolution module that combines switchable normalization, multi-scale convolution and dilated convolution in the network for better segmentation performance. Besides, considering the strong structural similarity between multi-modal stroke CT images, the USSL Net uses the correlation maximized structural similarity loss (SSL) function as the loss function to learn the varying shapes of the lesions. The experimental results show that our framework has achieved results in the following aspects. First, the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image. Second, the performance of our network model is better than that of other models for stroke segmentation tasks. Third, the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUDLOW C L, WARLOW C P. Comparable studies of the incidence of stroke and its pathological types: Results from an international collaboration [J]. Stroke, 1997, 28(3): 491–499.

    Article  Google Scholar 

  2. DOYLE K P, SIMON R P, STENZEL-POORE M P. Mechanisms of ischemic brain damage [J]. Neuropharmacology, 2008, 55(3): 310–318.

    Article  Google Scholar 

  3. GONZALEZ R G, HIRSCH J A, KOROSHETZ W J, et al. Acute ischemic stroke. imaging and intervention [J]. Journal of Neuroradiology, 2006, 33(3): 193.

    Article  Google Scholar 

  4. ZAHARCHUK G, EL MOGY I S, FISCHBEIN N J, et al. Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke [J]. Stroke, 2012, 43(7): 1843–1848.

    Article  Google Scholar 

  5. MEZZAPESA D M, PETRUZZELLIS M, LUCIVERO V, et al. Multimodal MR examination in acute ischemic stroke [J]. Neuroradiology, 2006, 48(4): 238–246.

    Article  Google Scholar 

  6. DONAHUE J, WINTERMARK M. Perfusion CT and acute stroke imaging: Foundations, applications, and literature review [J]. Journal of Neuroradiology, 2015, 42(1): 21–29.

    Article  Google Scholar 

  7. GILLEBERT C R, HUMPHREYS G W, MANTINI D. Automated delineation of stroke lesions using brain CT images [J]. NeuroImage: Clinical, 2014, 4: 540–548.

    Article  Google Scholar 

  8. TURECKOVA A, RODRÍGUEZ-SÁNCHEZ A J. ISLES Challenge: U-shaped convolution neural network with dilated convolution for 3d stroke lesion segmentation [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 319–327.

    Chapter  Google Scholar 

  9. ABULNAGA S M, RUBIN J. Ischemic stroke lesion segmentation in CT perfusion scans using pyramid pooling and focal loss [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 352–363.

    Chapter  Google Scholar 

  10. ZHAO S, WU B X, CHU W Q, et al. Correlation maximized structural similarity loss for semantic segmentation [EB/OL]. (2019-10-19). https://arxiv.org/abs/1910.08711.

  11. AKKUS Z, GALIMZIANOVA A, HOOGI A, et al. Deep learning for brain MRI segmentation: State of the art and future directions [J]. Journal of Digital Imaging, 2017, 30(4): 449–459.

    Article  Google Scholar 

  12. OLIVEIRA A, PEREIRA S, SILVA C A. Augmenting data when training a CNN for retinal vessel segmentation: How to warp? [C]//2017 IEEE 5th Portuguese Meeting on Bioengineering. Coimbra: IEEE, 2017: 1–4.

    Google Scholar 

  13. PEREIRA S, PINTO A, ALVES V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240–1251.

    Article  Google Scholar 

  14. NAZARI-FARSANI S, NYMAN M, KARJALAINEN T, et al. Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI [J]. Journal of Neuroscience Methods, 2020, 333: 108575.

    Article  Google Scholar 

  15. ROTH H R, LU L, FARAG A, et al. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation [M]//Medical image computing and computer-assisted intervention — MICCAI 2015. Cham: Springer, 2015: 556–564.

    Google Scholar 

  16. ZHAO A, BALAKRISHNAN G, DURAND F, et al. Data augmentation using learned transformations for one-shot medical image segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 8535–8545.

    Google Scholar 

  17. MOESKOPS P, VIERGEVER M A, MENDRIK A M, et al. Automatic segmentation of MR brain images with a convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1252–1261.

    Article  Google Scholar 

  18. MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision. Stanford, CA: IEEE, 2016: 565–571.

    Google Scholar 

  19. DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1734–1747.

    Article  Google Scholar 

  20. MAIER O, MENZE B H, VON DER GABLENTZ J, et al. ISLES 2015: A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI [J]. Medical Image Analysis, 2017, 35: 250–269.

    Article  Google Scholar 

  21. WINZECK S, HAKIM A, MCKINLEY R, et al. ISLES 2016 and 2017: Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI [J]. Frontiers in Neurology, 2018, 9: 679.

    Article  Google Scholar 

  22. YAHIAOUI A F Z, BESSAID A. Segmentation of ischemic stroke area from CT brain images [C]//2016 International Symposium on Signal, Image, Video and Communications. Tunis: IEEE, 2016: 13–17.

    Google Scholar 

  23. ABRAHAM N, KHAN N M. A novel focal tversky loss function with improved attention U-net for lesion segmentation [C]//2019 IEEE 16th International Symposium on Biomedical Imaging. Venice: IEEE, 2019: 683–687.

    Google Scholar 

  24. SHEN D G, WU G R, SUK H I. Deep learning in medical image analysis [J]. Annual Review of Biomedical Engineering, 2017, 19: 221–248.

    Article  Google Scholar 

  25. PINHEIRO G R, VOLTOLINE R, BENTO M, et al. V-net and U-net for ischemic stroke lesion segmentation in a small dataset of perfusion data [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 301–309.

    Chapter  Google Scholar 

  26. ANAND V K, KHENED M, ALEX V, et al. Fully automatic segmentation for ischemic stroke using CT perfusion maps [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 328–334.

    Chapter  Google Scholar 

  27. CLÈRIGUES A, VALVERDE S, BERNAL J, et al. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks [J]. Computers in Biology and Medicine, 2019, 115: 103487.

    Article  Google Scholar 

  28. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.

    Google Scholar 

  29. REKIK I, ALLASSONNIÈRE S, CARPENTER T K, et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal [J]. NeuroImage: Clinical, 2012, 1(1): 164–178.

    Article  Google Scholar 

  30. KABIR Y, DOJAT M, SCHERRER B, et al. Multimodal MRI segmentation of ischemic stroke lesions [C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon: IEEE, 2007: 1595–1598.

    Google Scholar 

  31. KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J]. Medical Image Analysis, 2017, 36: 61–78.

    Article  Google Scholar 

  32. ZHOU Y J, HUANG W J, DONG P, et al. DUNet: A dimension-fusion U shape network for chronic stroke lesion segmentation [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 940–950.

    Article  Google Scholar 

  33. LUO P, REN J M, PENG Z L. Differentiable learning-to-normalize via switchable normalization [EB/OL]. (2018-06-28). https://arxiv.org/abs/1806.10779.

  34. DOLZ J, AYED I B, DESROSIERS C. Dense multipath U-Net for ischemic stroke lesion segmentation in multiple image modalities [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 271–282.

    Chapter  Google Scholar 

  35. LOU M, QI Y L, LI X R, et al. Aggregated pyramid attention network for mass segmentation in mammograms [J]. Multimedia Tools and Applications, 2021. https://doi.org/10.1007/s11042-021-10940-x.

  36. LOU M, QI Y L, MENG J, et al. DCANet: Dual contextual affinity network for mass segmentation in whole mammograms [J]. Medical Physics, 2021, 48(8): 4291–4303.

    Article  Google Scholar 

  37. SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks [M]//Machine learning in medical imaging. Cham: Springer, 2019: 379–387.

    Google Scholar 

  38. SUDRE C H, LI W Q, VERCAUTEREN T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations [M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2017: 240–248.

    Chapter  Google Scholar 

  39. PISANA F, HENZLER T, SCHÖNBERG S, et al. Noise reduction and functional maps image quality improvement in dynamic CT perfusion using a new K-means clustering guided bilateral filter (KMGB) [J]. Medical Physics, 2017, 44(7): 3464–3482.

    Article  Google Scholar 

  40. CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848.

    Article  Google Scholar 

  41. ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation [C]//Medical image computing and computer-assisted intervention — MICCAI 2016. Cham: Springer, 2016: 424–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Chang  (常 青).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61976091)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chang, Q. USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation. J. Shanghai Jiaotong Univ. (Sci.) 27, 485–497 (2022). https://doi.org/10.1007/s12204-022-2412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2412-y

Key words

CLC number

Document code

Navigation