Log in

Intense terahertz generation from photoconductive antennas

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, we review the past and recent works on generating intense terahertz (THz) pulses from photoconductive antennas (PCAs). We will focus on two types of large-aperture photoconductive antenna (LAPCA) that can generate high-intensity THz pulses (a) those with large-aperture dipoles and (b) those with interdigitated electrodes. We will first describe the principles of THz generation from PCAs. The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized. We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with wide-bandgap semiconductor substrates. Then, we will explain the evolution of LAPCA with interdigitated electrodes, which allows one to reduce the photoconductive gap size, and thus obtain higher bias fields while applying lower voltages. We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by amplified lasers. Finally, we will discuss the future perspectives of THz pulse generation using LAPCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1: 97–105

    Google Scholar 

  2. Consolino L, Bartalini S, De Natale P. Terahertz frequency metrology for spectroscopic applications: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2017, 38(11): 1289–1315

    Google Scholar 

  3. Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies. Advances in Optics and Photonics, 2016, 8(3): 401

    Google Scholar 

  4. Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A. Light-induced superconductivity in a stripe-ordered cuprate. Science, 2011, 331(6014): 189–191

    Google Scholar 

  5. Först M, Tobey R I, Bromberger H, Wilkins S B, Khanna V, Caviglia A D, Chuang Y D, Lee W S, Schlotter W F, Turner J J, Minitti M P, Krupin O, Xu Z J, Wen J S, Gu G D, Dhesi S S, Cavalleri A, Hill J P. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Physical Review Letters, 2014, 112(15): 157002

    Google Scholar 

  6. Mankowsky R, Subedi A, Först M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature, 2014, 516(7529): 71–73

    Google Scholar 

  7. Kaiser S, Clark S R, Nicoletti D, Cotugno G, Tobey R I, Dean N, Lupi S, Okamoto H, Hasegawa T, Jaksch D, Cavalleri A. Optical properties of a vibrationally modulated solid state Mott insulator. Scientific Reports, 2014, 4: 3823

    Google Scholar 

  8. Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccò M, Clark S R, Jaksch D, Cavalleri A. Possible light-induced superconductivity in K3C60 at high temperature. Nature, 2016, 530(7591): 461–464

    Google Scholar 

  9. Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11: 16–18

    Google Scholar 

  10. Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H, Shimano R. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science, 2014, 345(6201): 1145–1149

    MathSciNet  MATH  Google Scholar 

  11. Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z, Shimano R. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Physical Review Letters, 2013, 111(5): 057002

    Google Scholar 

  12. Rajasekaran S, Casandruc E, Laplace Y, Nicoletti D, Gu G D, Clark S R, Jaksch D, Cavalleri A. Parametric amplification of a superconducting plasma wave. Nature Physics, 2016, 12(11): 1012–1016

    Google Scholar 

  13. Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles. Applied Physics Letters, 1984, 45(3): 284–286

    Google Scholar 

  14. Darrow J T, Zhang X C, Auston D H, Morse J D. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607–1616

    Google Scholar 

  15. Stone M R, Naftaly M, Miles R E, Fletcher J R, Steenson D P. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2420–2429

    Google Scholar 

  16. Reid M, Fedosejevs R. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences. Applied Optics, 2005, 44(1): 149–153

    Google Scholar 

  17. Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006

    Google Scholar 

  18. Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004

    Google Scholar 

  19. Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586

    Google Scholar 

  20. Pačebutas V, Bičiūnas A, Balakauskas S, Krotkus A, Andriukaitis G, Lorenc D, Pugžlys A, Baltuška A. Terahertz time-domainspectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting component. Applied Physics Letters, 2010, 97(3): 031111

    Google Scholar 

  21. Rungsawang R, Ohta K, Tukamoto K, Hattori T. Ring formation of focused half-cycle terahertz pulses. Journal of Physics D, Applied Physics, 2003, 36(3): 229

    Google Scholar 

  22. Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M, Hegmann F A. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 193204

    Google Scholar 

  23. Hu B B, Nuss M C. Imaging with terahertz waves. Optics Letters, 1995, 20(16): 1716

    Google Scholar 

  24. Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M. Recent advances in terahertz imaging. Applied Physics B, Lasers and Optics, 1999, 68(6): 1085–1094

    Google Scholar 

  25. Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging. Optics Letters, 1998, 23(14): 1114–1116

    Google Scholar 

  26. O’Hara J, Grischkowsky D. Quasi-optic terahertz imaging. Optics Letters, 2001, 26(23): 1918–1920

    Google Scholar 

  27. Zeitler J A, Gladden L F. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(1): 2–22

    Google Scholar 

  28. Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

    Google Scholar 

  29. Yang S H, Hashemi M R, Berry C W, Jarrahi M. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology, 2014, 4 (5): 575–581

    Google Scholar 

  30. Yardimci N T, Lu H, Jarrahi M. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Applied Physics Letters, 2016, 109(19): 191103

    Google Scholar 

  31. Yardimci N T, Cakmakyapan S, Hemmati S, Jarrahi M. Significant efficiency enhancement in photoconductive terahertz emitters through three-dimensional light confinement. In: Proceedings of IEEE MTT-S International Microwave Symposium. Honololu: IEEE, 2017, 435–438

    Google Scholar 

  32. Yardimci N T, Cakmakyapan S, Hemmati S, Jarrahi M. A highpower broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity. Scientific Reports, 2017, 7(1): 4166

    Google Scholar 

  33. Jones R R, You D, Bucksbaum P H. Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses. Physical Review Letters, 1993, 70(9): 1236–1239

    Google Scholar 

  34. Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311

    Google Scholar 

  35. Ropagnol X, Kovács Z, Gilicze B, Zhuldybina M, Blanchard F, Garcia-Rosas C M, Szatmári S, Földes I B, Ozaki T. Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New Journal of Physics, 2019, 21(11): 113042

    Google Scholar 

  36. Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Advanced Optical Materials, 2020, 8(3): 1900681

    Google Scholar 

  37. Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7: 680–690

    Google Scholar 

  38. Ropagnol X, Morandotti R, Ozaki T, Reid M. THz pulse sha** and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664

    Google Scholar 

  39. You D, Dykaar D R, Jones R R, Bucksbaum P H. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290

    Google Scholar 

  40. Brown E R, Smith F W, McIntosh K A. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. Journal of Applied Physics, 1993, 73(3): 1480–1484

    Google Scholar 

  41. Emadi R, Barani N, Safian R, Nezhad A Z. Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37 (11): 1069–1085

    Google Scholar 

  42. Kim D S, Citrin D S. Coulomb and radiation screening in photoconductive terahertz sources. Applied Physics Letters, 2006, 88(16): 161117

    Google Scholar 

  43. Tiedje H F, Saeedkia D, Nagel M, Haugen H K. Optical scanning techniques for characterization of terahertz photoconductive antenna arrays. In: Proceedings of the 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics. Pasadena: IEEE, 2008, 1–2

    Google Scholar 

  44. Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624

    MathSciNet  Google Scholar 

  45. Huang Y, Khiabani N, Shen Y, Li D. Terahertz photoconductive antenna efficiency. In: Proceedings of 2011 International Workshop on Antenna Technology (iWAT). Hong Kong: IEEE, 2011, 152–156

    Google Scholar 

  46. Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology. Optical Engineering (Redondo Beach, Calif.), 2017, 56(1): 010901

    Google Scholar 

  47. Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Applied Optics, 1997, 36 (30): 7853–7859

    Google Scholar 

  48. Tani M, Yamamoto K, Estacio E S, Que C T, Nakajima H, Hibi M, Miyamaru F, Nishizawa S, Hangyo M. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(4): 393–404

    Google Scholar 

  49. Shi W, Hou L, Wang X. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111

    Google Scholar 

  50. Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperture biased InP photoconductors. Optics Letters, 1993, 18(16): 1332

    Google Scholar 

  51. Ropagnol X, Morandotti R, Ozaki T, Reid M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Photonics Journal, 2011, 3(2): 174–186

    Google Scholar 

  52. Prajapati J, Bharadwaj M, Chatterjee A, Bhattacharjee R. Magnetic field-assisted radiation enhancement from a large aperture photoconductive antenna. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 678–687

    Google Scholar 

  53. Ropagnol X. Développement d’une source de radiation terahertz (THz) intense et mise en forme d’impulsions THz àpartir d’une antenne de grande ouverture de ZnSe. 2013

  54. Wang X, Shi W, Hou L, Ma D, Qu G. Investigation of semiinsulating gallium arsenide photoconductive photodetectors. In: Proceedings of 2008 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. Bei**g: SPIE, 2008, 71570B

    Google Scholar 

  55. Yoneda H, Tokuyama K, Ueda K, Yamamoto H, Baba K. Highpower terahertz radiation emitter with a diamond photoconductive switch array. Applied Optics, 2001, 40(36): 6733–6736

    Google Scholar 

  56. Meng P, Zhao X, Yang X, Wu J, **e Q, He J, Hu J, He J. Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. Journal of the European Ceramic Society, 2019, 39(15): 4824–4830

    Google Scholar 

  57. Singh B P, Imafuji O, Hirose Y, Fukushima Y, Takigawa S, Ueda D. High power C-doped GaN photoconductive THz emitter. In: Proceedings of Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics. Cardiff: IEEE, 2007, 1004–1005

    Google Scholar 

  58. Ropagnol X, Morandotti R, Ozaki T, Reid M. Towards high-power terahertz emitters using large aperture ZnSe photoconductive antennas. In: Proceedings of Laser Science to Photonic Applications. San Jose: IEEE, 2010, 1–2

    Google Scholar 

  59. Doğan S, Teke A, Huang D, Morkoç H, Roberts C B, Parish J, Ganguly B, Smith M, Myers R E, Saddow S E. 4H-SiC photoconductive switching devices for use in high-power applications. Applied Physics Letters, 2003, 82(18): 3107–3109

    Google Scholar 

  60. Friedrichs P, Burte E P, Schörner R. Dielectric strength of thermal oxides on 6H-SiC and 4H-SiC. Applied Physics Letters, 1994, 65 (13): 1665–1667

    Google Scholar 

  61. Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112

    Google Scholar 

  62. Wang L M. Relationship between intrinsic breakdown field and bandgap of materials. In: Proceedings of the 25th International Conference on Microelectronics. Belgrade: IEEE, 2006, 615–618

    Google Scholar 

  63. Ropagnol X, Bouvier M, Reid M, Ozaki T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107

    Google Scholar 

  64. Hou L, Shi W, Chen S. Noise analysis and optimization of terahertz photoconductive emitters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8401305

    Google Scholar 

  65. Moreno E, Pantoja M F, Ruiz F G, Roldán J B, García S G. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2014, 35 (5): 432–444

    Google Scholar 

  66. Castro-Camus E, Fu L, Lloyd-Hughes J, Tan H H, Jagadish C, Johnston M B. Photoconductive response correction for detectors of terahertz radiation. Journal of Applied Physics, 2008, 104(5): 053113

    Google Scholar 

  67. Park S G, Weiner A M, Melloch M R, Siders C W, Siders J L W, Taylor A J. High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE Journal of Quantum Electronics, 1999, 35(8): 1257–1268

    Google Scholar 

  68. Benicewicz P K, Roberts J P, Taylor A J. Scaling of terahertz radiation from large-aperture biased photoconductors. Journal of the Optical Society of America B, Optical Physics, 1994, 11(12): 2533

    Google Scholar 

  69. Duvillaret L, Garet F, Roux J F, Coutaz J L. Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 615–623

    Google Scholar 

  70. Castro-Camus E, Lloyd-Hughes J, Johnston M B. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(19): 195301

    Google Scholar 

  71. Prajapati J, Bharadwaj M, Chatterjee A, Bhattacharjee R. Radiation field analysis of a photoconductive antenna using an improved carrier dynamics. Semiconductor Science and Technology, 2019, 34(2): 024004

    Google Scholar 

  72. Piao Z, Tani M, Sakai K. Carrier dynamics and terahertz radiation in photoconductive antennas. Japanese Journal of Applied Physics, 2000, 39(1): 96–100

    Google Scholar 

  73. Winnerl S, Peter F, Nitsche S, Dreyhaupt A, Zimmermann B, Wagner M, Schneider H, Helm M, Köhler K. Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 449–457

    Google Scholar 

  74. Shi W, Sun X F, Zeng J, Jia W L. Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna. In: Proceedings of International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology. Bei**g: SPIE, 2008, 662228

    Google Scholar 

  75. Liu D, Qin J. Carrier dynamics of terahertz emission from low-temperature-grown GaAs. Applied Optics, 2003, 42(18): 3678–3683

    Google Scholar 

  76. Piao Z, Tani M, Sakai K. Carrier dynamics and THz radiation in biased semiconductor structures. In: Proceedings of SPIE 3617, Terahertz Spectroscopy and Applications. San Jose: SPIE, 1999, 49–56

    Google Scholar 

  77. Chen L, Fan W. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas. In: Proceedings of International Symposium on Photoelectronic Detection and Imaging 2011: Terahertz Wave Technologies and Applications. Bei**g: SPIE, 2011, 81950K

    Google Scholar 

  78. Šlekas G, Kancleris Ž, Urbanowicz A, Čiegis R. Comparison of full-wave models of terahertz photoconductive antenna based on ordinary differential equation and Monte Carlo method. European Physical Journal Plus, 2020, 135(1): 85

    Google Scholar 

  79. Cadilhon B, Cassany B, Modin P, Diot J C, Bertrand V, Pecastaing L. Ultra Wideband Antennas for High Pulsed Power Applications. In: Matin M, ed. Ultra Wideband Communications: Novel Trends Antennas and Propagation. Rijeka: InTech, 2011

    Google Scholar 

  80. Mahadevan S, Hardas S M, Suryan G. Electrical breakdown in semiconductors. Physica Status Solidi (a), 1971, 8(2): 335–374

    Google Scholar 

  81. Xu M, Li M, Shi W, Ma C, Zhang Q, Fan L, Shang X, Xue P. Temperature-dependence of high-gain operation in GaAs photoconductive semiconductor switch at 1.6 µJ excitation. IEEE Electron Device Letters, 2016, 37(1): 67–69

    Google Scholar 

  82. Qadri S B, Wu D H, Graber B D, Mahadik N A, Garzarella A. Failure mechanism of THz GaAs photoconductive antenna. Applied Physics Letters, 2012, 101(1): 011910

    Google Scholar 

  83. Sun C, Zhang A. Efficient terahertz generation from lightly ion-beam-treated semi-insulating GaAs photoconductive antennas. Applied Physics Express, 2017, 10(10): 102202

    Google Scholar 

  84. Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278

    Google Scholar 

  85. Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324

    Google Scholar 

  86. Salem B, Morris D, Aimez V, Beerens J, Beauvais J, Houde D. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327

    Google Scholar 

  87. Salem B, Morris D, Salissou Y, Aimez V, Charlebois S, Chicoine M, Schiettekatte F. Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 2006, 24(3): 774–777

    Google Scholar 

  88. Ono S, Murakami H, Quema A, Diwa G, Sarukura N, Nagasaka R, Ichikawa Y, Ogino H, Ohshima E, Yoshikawa A, Fukuda T. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112

    Google Scholar 

  89. Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257

    Google Scholar 

  90. Gavrushchuk E M. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials, 2003, 39(9): 883–899

    Google Scholar 

  91. Cho P S, Peng F, Ho P T, Goldhar J, Lee C H. ZnSe photoconductive switches with transparent electrodes. In: Proceedings of the 8th IEEE International Conference on Pulsed Power. San Diego: IEEE, 2005, 209–212

    Google Scholar 

  92. Ho P T, Peng F, Goldhar J. Photoconductive switching using polycrystalline ZnSe. IEEE Transactions on Electron Devices, 1990, 37(12): 2517–2519

    Google Scholar 

  93. Cho P S, Goldhar J, Lee C H, Saddow S E, Neudeck P. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices. Journal of Applied Physics, 1995, 77(4): 1591–1599

    Google Scholar 

  94. Holzman J F, Elezzabi A Y. Two-photon photoconductive terahertz generation in ZnSe. Applied Physics Letters, 2003, 83 (14): 2967–2969

    Google Scholar 

  95. Mauch D, Sullivan W, Bullick A, Neuber A, Dickens J. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Transactions on Plasma Science, 2015, 43(6): 2021–2031

    Google Scholar 

  96. Shimizu H, Watanabe N, Morikawa T, Shima A, Iwamuro N. 1.2 kV silicon carbide Schottky barrier diode embedded MOSFETs with extension structure and titanium-based single contact. Japanese Journal of Applied Physics, 2020, 59(2): 026502

    Google Scholar 

  97. Kimoto T, Yonezawa Y. Current status and perspectives of ultrahigh-voltage SiC power devices. Materials Science in Semiconductor Processing, 2018, 78: 43–56

    Google Scholar 

  98. Bhalla A. Status of SiC Products and Technology. In: Sharma Y, ed. Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications. London: InTech, 2018

    Google Scholar 

  99. **ao L, Yang X, Duan P, Xu H, Chen X, Hu X, Peng Y, Xu X. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption. Applied Optics, 2018, 57(11): 2804–2808

    Google Scholar 

  100. Yu D, Kang J, Berakdar J, Jia C. Nondestructive ultrafast steering of a magnetic vortex by terahertz pulses. NPG Asia Materials, 2020, 12(1): 36

    Google Scholar 

  101. Elliott D. Ultraviolet Laser Technology and Applications. New York: Academic Press, 2014

    Google Scholar 

  102. Duarte F. Tunable Lasers Handbook. New York: Academic Press, 1996

    Google Scholar 

  103. Szatmári S, Rácz B, Schäffer F P. Bandwidth limited amplification of 220 fs pulses in XeCl. Optics Communications, 1987, 62(4): 271–276

    Google Scholar 

  104. Dick B, Szatmári S, Rácz B, Schäfer F P. Bandwidth limited amplification of 220 fs pulses in XeCl: theoretical and experimental study of temporal and spectral behavior. Optics Communications, 1987, 62(4): 277–283

    Google Scholar 

  105. Szatmári S, Schäfer F P, Müller-Horsche E, Müchenheim W. Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Optics Communications, 1987, 63(5): 305–309

    Google Scholar 

  106. Di G, Bhattacharya A, Samad S, Nayak B, Shah A P, Rahman A A, Bhattacharya A, Prabhu S S. Towards bandwidth-enhanced GaN-based terahertz photoconductive antennas. In: Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves. Paris: IEEE, 2019, 1–2

    Google Scholar 

  107. Szatmári S. High-brightness ultraviolet excimer lasers. Applied Physics B: Laser and Optics, 1994, 58(3): 211–223

    Google Scholar 

  108. Loata G C, Thomson M D, Löffler T, Roskos H G. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy. Applied Physics Letters, 2007, 91(23): 232506

    Google Scholar 

  109. Budiarto E, Margolies J, Jeong S, Son J, Bokor J. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 1996, 32(10): 1839–1846

    Google Scholar 

  110. Welsh G H, Turton D A, Jones D R, Jaroszynski D A, Wynne K. 200 ns pulse high-voltage supply for terahertz field emission. Review of Scientific Instruments, 2007, 78(4): 043103

    Google Scholar 

  111. Winnerl S, Zimmermann B, Peter F, Schneider H, Helm M. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express, 2009, 17(3): 1571–1576

    Google Scholar 

  112. Cliffe M J, Rodak A, Graham D M, Jamison S P. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm. Applied Physics Letters, 2014, 105(19): 191112

    Google Scholar 

  113. Mourou G A, Bloom D M, Lee C H. Picosecond electronics and optoelectronics. In: Proceedings of the Topical Meeting Lake Tahoe. Nevada: SPIE, 1985, 438

    Google Scholar 

  114. Cox C H III, Diadiuk V, Yao I, Leonberger F J, Williamson R C. InP optoelectronic switches and their high-speed signal-processiny applications. In: Proceedings of Picosecond Optoelectronics. San Diego: SPIE, 1983, 164–168

    Google Scholar 

  115. Hattori T, Egawa K, Ookuma S I, Itatani T. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424

    Google Scholar 

  116. Chou S Y, Liu Y, Fischer P B. Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width. Applied Physics Letters, 1992, 61(4): 477–479

    Google Scholar 

  117. Awad M, Nagel M, Kurz H, Herfort J, Ploog K. Characterization of low temperature GaAs antenna array terahertz emitters. Applied Physics Letters, 2007, 91(18): 181124

    Google Scholar 

  118. Acuna G, Buersgens F, Lang C, Handloser M, Guggenmos A, Kersting R. Interdigitated terahertz emitters. Electronics Letters, 2008, 44(3): 229–231

    Google Scholar 

  119. Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108

    Google Scholar 

  120. Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114

    Google Scholar 

  121. Go D B, Pohlman D A. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. Journal of Applied Physics, 2010, 107(10): 103303

    Google Scholar 

  122. Headley C, Fu L, Member S, Parkinson P, Xu X, Lloyd-Hughes J, Jagadish C, Johnston M B. Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 17–21

    Google Scholar 

  123. Gupta A, Rana G, Bhattacharya A, Singh A, Jain R, Bapat R D, Duttagupta S P, Prabhu S S. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics, 2018, 3(5): 051706

    Google Scholar 

  124. Kirawanich P, Yakura S J, Islam N E. Study of high-power wideband terahertz-pulse generation using integrated high-speed photoconductive semiconductor switches. IEEE Transactions on Plasma Science, 2009, 37(1): 219–228

    Google Scholar 

  125. Singh A, Welsch M, Winnerl S, Helm M, Schneider H. Improved electrode design for interdigitated large-area photoconductive terahertz emitters. Optics Express, 2019, 27(9): 13108–13115

    Google Scholar 

  126. Ropagnol X, Chai X, Raeis-Zadeh S M, Safavi-Naeini S, Kirouac-Turmel M, Bouvier M, Cote C Y, Reid M, Gauthier M A, Ozaki T. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8

    Google Scholar 

  127. Berry C W, Jarrahi M. Principles of impedance matching in photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(12): 1182–1189

    Google Scholar 

  128. Emadi R, Safian R, Nezhad A Z. Theoretical modeling of terahertz pulsed photoconductive antennas based on hot-carriers effect. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23 (4): 1–9

    Google Scholar 

  129. Brown E R, McIntosh K A, Smith F W, Nichols K B, Manfra M J, Dennis C L, Mattia J P. Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer. Applied Physics Letters, 1994, 64(24): 3311–3313

    Google Scholar 

  130. Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108

    Google Scholar 

  131. Bacon D R, Gill T B, Rosamond M, Burnett A D, Dunn A, Li L, Linfield E H, Davies A G, Dean P, Freeman J R. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express, 2020, 28(12): 17219–17231

    Google Scholar 

  132. Dreyhaupt A, Peter F, Winnerl S, Nitsche S, Wagner M, Schneider H, Helm M, Köhler K. Leistungsstarke emitter und einfach handhabbare detektoren für die terahertz-time-domain-spektroskopie. Technisches Messen., 2008, 75(1): 3–13

    Google Scholar 

  133. Winnerl S. Scalable microstructured photoconductive terahertz emitters. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(4): 431–454

    Google Scholar 

  134. Matthäus G, Nolte S, Hohmuth R, Voitsch M, Richter W, Pradarutti B, Riehemann S, Notni G, Tünnermann A. Large-area microlens emitters for powerful THz emission. Applied Physics B, Lasers and Optics, 2009, 96(2–3): 233–235

    Google Scholar 

  135. Singh A, Prabhu S S. Microlensless interdigitated photoconductive terahertz emitters. Optics Express, 2015, 23(2): 1529–1535

    Google Scholar 

  136. Bacon D R, Gill T B, Rosamond M, Burnett A D, Dunn A, Li L, Linfield E H, Davies A G, Dean P, Freeman J R. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express, 2020, 28(12): 17219–17231

    Google Scholar 

  137. Singh A, Winnerl S, König-Otto J C, Stephan D R, Helm M, Schneider H. Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters. Optics Express, 2016, 24(20): 22628–22634

    Google Scholar 

  138. Zhang X C. Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics. Journal of Luminescence, 1995, 66–67(1–6): 488–492

    Google Scholar 

  139. Preu S, Dhler G H, Malzer S, Wang L J, Gossard A C. Tunable, continuous-wave terahertz photomixer sources and applications. Journal of Applied Physics, 2011, 109(6): 061301

    Google Scholar 

  140. Hale P J, Madeo J, Chin C, Dhillon S S, Mangeney J, Tignon J, Dani K M. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Optics Express, 2014, 22(21): 26358–26364

    Google Scholar 

  141. Madéo J, Jukam N, Oustinov D, Rosticher M, Rungsawang R, Tignon J, Dhillon S S. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613

    Google Scholar 

  142. Yardimci N T, Yang S H, Berry C W, Jarrahi M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229

    Google Scholar 

  143. Maussang K, Palomo J, Mangeney J, Dhillon S S, Tignon J. Largearea photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization. Optics Express, 2019, 27(10): 14784–14797

    Google Scholar 

  144. Sterczewski L A, Grzelczak M P, Plinski E F. Terahertz antenna electronic chopper. Review of Scientific Instruments, 2016, 87(1): 014702

    Google Scholar 

  145. Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

    Google Scholar 

  146. Chai X, Ropagnol X, Raeis-Zadeh S M, Reid M, Safavi-Naeini S, Ozaki T. Subcycle terahertz nonlinear optics. Physical Review Letters, 2018, 121(14): 143901

    Google Scholar 

  147. Moreno E, Pantoja M F, Ruiz F G, Roldán J B, García S G. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2014, 35 (5): 432–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneyuki Ozaki.

Additional information

Elchin Isgandarov is a Ph.D. student at Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Canada. He received his B.Sc. and M.Sc. degrees in Physics and Semiconductor Physics respectively from Azerbaijan State Pedagogical University, Baku, Azerbaijan. He also obtained an M.Sc. degree in Nanophysics from University of Montpellier, France. His current research focuses on fabrication and development of intense THz large aperture photoconductive antennas (LAPCAs) and their application in the nonlinear THz time-domain spectroscopy.

Xavier Ropagnol graduated from University of Rouen, France in 2004 and received his M.Sc. degree from Rouen University in 2006 and his Ph.D. degree from Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT) in Varennes, Qc, Canada in 2013 with very good mention. During his PhD, he worked on the development of table top intense THz sources from large aperture photoconductive antenna and optical rectification. He also worked on the non-linear interaction of these THz pulses with matter with a particular attention on n-doped thin film semiconductor. From 2013 to 2014, he was post-doctoral student at McGill University, Montreal, Qc, Canada and at University of Northern British Columbia, Prince Georges, BC, Canada where he keeps working on intense THz sources and especially with wide bandgap semiconductor photoconductive antennas. He came back to Montreal in 2014 as a research associate at INRS-EMT and ÉTS, Montreal, Qc, Canada, where he is develo** THz measurement tools such the THz chemical microscope and the THz imaging. In parallel, he is still develo** THz sources and detector which are more adapted to ytterbium laser at wavelength of 1.03 µm. Today, his main research interests include high intensity THz radiations and their applications with matters, non-linear optics and development of THz technology for industrial environment.

Mangaljit Singh is a Ph.D. student at Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Canada. He received his Master degree in Applied Optics from Indian Institute of Technology, India. He is currently involved in studying the high-intensity ultrafast laser-matter interaction, particularly the coherent extreme ultraviolet radiation from the phenomenon of high-order harmonic generation. He is also interested in the intense THz generation methods and THz time-domain spectroscopic applications.

Tsuneyuki Ozaki graduated from University of Tokyo, Japan in 1987, where he also received his M.Sc. and Ph.D. degrees in 1989 and 1998, respectively. From 1990 to 2000, he was a Research Associate at Institute for Solid State Physics, University of Tokyo, Japan. From 2000 to 2003, he was a Research Specialist at Nippon Telegraph and Telephone (NTT) Basic Research Laboratories, Atsugi, Japan. In 2003, he joined Institut National de la Recherche Scientifique (INRS), Varennes, QC, Canada, as an Assistant Professor. He is currently a Full Professor and the former Director of the Advanced Laser Light Source (ALLS) facility. His main research interests include high-intensity THz radiation sources and their applications, intense high-order harmonic generation, and the use of lasers in medicine. T. Ozaki has served on the Board of Directors of the International Committee on Ultra-high Intensity Lasers (ICUIL), and since 2018 is the Chair of Commission 17 on Laser Physics and Photonics of the International Union of Pure and Applied Physics (IUPAP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isgandarov, E., Ropagnol, X., Singh, M. et al. Intense terahertz generation from photoconductive antennas. Front. Optoelectron. 14, 64–93 (2021). https://doi.org/10.1007/s12200-020-1081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1081-4

Keywords

Navigation