Log in

Multispectral UAV and satellite images for digital soil modeling with gradient descent boosting and artificial neural network

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Sensor technology and machine learning (ML) enable rapid and accurate estimation of soil properties. This study aimed to estimate some soil characteristics with different ML algorithms using unmanned aerial vehicle (UAV) and Sentinel 2A optical satellite images. Four spectral indices and soil data were statistically compared to assess the performance of estimation. The ML algorithms including Multi-Layer Perception Artificial Neural Network (MLP-ANN) and Gradient Descent Boosting Tree (GDBT)ML were employed to improve the estimation. Bayesian optimization was used to optimize the hyperparameters of the GDBT ML algorithm. The relationships between vegetation indices calculated using the UAV and Sentinel 2A (S2A)satellite images were examined. Total of 122images were taken for 1.66 ha land with a spatial resolution of 3.99 cm. The Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Transformed Soil Adjusted Vegetation Index (TSAVI) from UAV in rangeland and olive orchards were highly correlated with the same vegetation indices calculated using the S2A image. The RMSE values improved between 23.23 and 35.66% for sand, silt and soil organic matter content in MLP-UAV networks, while the MLP-S2A networks provided 9.73 to 19.85% improvement for pH, clay and soil moisture (SM). The RMSE values in UAV-based GBDT ML algorithms were more successful in estimation of pH, sand, silt, CaCO3, and SM than the S2A models and the relative improvement was between 12.16 and 93.66%. The results showed that (i) estimation success is affected by the spectral response of the soil property as well as statistical characteristics of the observation values, (ii) different optimization techniques as well as the estimation algorithm affect the estimation accuracy, (iii) land use types play an important role in the estimation variance, and (iv) the estimation performance of UAV based models is compatible with the S2A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Adeline KRM, Gomez C, Gorretta N, Roger J-M (2017) Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma 288:143–153. https://doi.org/10.1016/j.geoderma.2016.11.010

    Article  Google Scholar 

  • Alajmi MS, Almeshal AM (2021) Estimation and optimization of tool wear in conventional turning of 709M40 alloy steel using support vector machine (SVM) with Bayesian optimization. Materials 14(14):3773

    Article  Google Scholar 

  • Baret F, Guyot G, Major D (1989) TSAVI: a vegetation index which minimizes soil brightness effects on LAI or APAR estimation. 12th Canadian symposium on remote sensing and IGARSS. Vancouver, Canada 1989:07/10–07/14

    Google Scholar 

  • Binte Mostafiz R, Noguchi R, Ahamed T (2021) Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land 10(2):223

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils 1. Agronomyjournal 54(5):464–465

    Google Scholar 

  • Breiman L (1996) Some properties of splitting criteria. Mach Learn 24(1):41–47

    Article  Google Scholar 

  • Breiman L (2001) Using iterated bagging to debias regressions. Mach Learn 45(3):261–277

    Article  Google Scholar 

  • Budak M, Gunal H (2016) Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed. Adv Environ Biol 10(5):61–73

    Google Scholar 

  • Budak M, Günal H (2018) Carbon storage potentials of soils under different land uses in the upper Tigris Basin. Anatolian J Forest Stud 4(1):63–76 (in Turkish)

    Google Scholar 

  • Camberdella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field scale variability soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Casamitjana M, Torres-Madroñero MC, Bernal-Riobo J, Varga D (2020) Soil moisture analysis by means of multispectral images according to land use and spatial resolution on andosols in the Colombian Andes. Appl Sci 10(16):5540

    Article  Google Scholar 

  • Castaldi F (2021) Sentinel-2 and Landsat-8 multi-temporal series to estimate topsoil properties on croplands. Remote Sens 2021(13):3345

    Article  Google Scholar 

  • Demattê JAM, Alves MR, Terra FS, Bosquilia RWD, Fongaro CT, Barros PPS (2016) Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Revista Brasileira de Ciência Do Solo 2016:40

    Google Scholar 

  • Dindaroğlu T (2014) The use of the GIS kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. J Environ Health Sci Eng 12(1):1–11

    Article  Google Scholar 

  • Dindaroglu T, Babur E, Yakupoglu T, Rodrigo-Comino J, Cerda A (2021) Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf J 122:103318

    Article  Google Scholar 

  • Divya Y, Gopinathn P (2019) Soil water content measurement using hyper-spectral remote sensing techniques–a case study from north-western part of Tamil Nadu, India. Remote Sensing Appl: Soc Environ 14:1–7

    Google Scholar 

  • Falahatkar S, Hosseini SM, Ayoubi S, Salmanmahiny A (2016) Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Arch Agron Soil Sci 62:375–393. https://doi.org/10.1080/03650340.2015.1051472

    Article  Google Scholar 

  • Fernández-Manso A, Fernández-Manso O, Quintano C (2016) SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int J Appl Earth Obs Geoinf 50:170–175

    Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  • Gasmi A, Gomez C, Chehbouni A, Dhiba D, Elfil H (2022) Satellite multi-sensor data fusion for soil clay map** based on the spectral index and spectral bands approaches. Remote Sens 14(5):1103. https://doi.org/10.3390/rs14051103

    Article  Google Scholar 

  • Gholizadeh A, Žižala D, Saberioon M, Borůvka L (2018) Soil organic carbon and texture retrieving and map** using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens Environ 218:89–103

    Article  Google Scholar 

  • Gitelson A, Merzlyak M (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res 22:689–692

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87. https://doi.org/10.1016/S0034-4257(01)00289-9

    Article  Google Scholar 

  • Gomez C, Adeline K, Bacha S, Driessen B, Gorretta N, Lagacherie P, Roger JM, Briottet X (2018) Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sens Environ 204:18–30

    Article  Google Scholar 

  • Gomez C, Dharumarajan S, Féret JB, Lagacherie P, Ruiz L, Sekhar M (2019) Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture map**. Remote Sens 11(5):565

    Article  Google Scholar 

  • Grunwald S, McBratney A, Thompson J, Minasny B, Boettinger J (2016) Digital soil map** in a changing world. A Multicultural Approach. CRC Press, In Computing Ethics, pp 301–306

    Google Scholar 

  • Guan Y, Grote K, Schott J, Leverett K (2022) Prediction of soil water content and electrical conductivity using random Forest methods with UAV multispectral and ground-coupled geophysical data. Remote Sens 14(4):1023

    Article  Google Scholar 

  • Günal H, Erşahin S (2006) Use of quantified color parameters in estimation of soil properties. J Agricult Sci 12(01):85–92

    Google Scholar 

  • Günal E, Kılıç OM, Gündoğan R, Budak M (2021) The use of unmanned air vehicles in cereal cultivation. Climate-Smart Agricult Real Green Revol, Chapter 2:13–32

    Google Scholar 

  • Guo L, Zhao C, Zhang H, Chen Y, Linderman M, Zhang Q, Liu Y (2017) Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma 285:280–292

    Article  Google Scholar 

  • Hassan IOM (2013) A comparison of methods for assessing the relative importance of input variables in artificial neural networks. J Appl Sci Res 9:5692–5700

    Google Scholar 

  • Heil J, Jörges C, Stumpe B (2022) Fine-scale map** of soil organic matter in agricultural soils using UAVs and machine learning. Remote Sens 14:3349. https://doi.org/10.3390/rs14143349

    Article  Google Scholar 

  • Huete A (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Huete AR, Jackson RD (1987) Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sensing Environ 23(2):213–232

    Article  Google Scholar 

  • Hunt ER, Hively WD, Fujikawa SJ, Linden DS, Daughtry CST, McCarty GW (2010) Acquisition of NIR-green-blue digital photographs from unmanned Aircraft for Crop Monitoring. Remote Sens 2:290–305

    Article  Google Scholar 

  • Ibrahim OM (2013) A comparison of methods for assessing the relative importance of input variables in artificial neural networks. J Appl Sci Res 9:5692–5700

    Google Scholar 

  • Jelínek Z, Starý K, Kumhálová J, Lukáš J, Mašek J (2020) Winter wheat, winter rape and poppy crop growth evaluation with the help of remote and proximal sensing measurements. Agron Res 18(3):2049–2059. https://doi.org/10.15159/AR.20.176

    Article  Google Scholar 

  • Khaledian Y, Miller BA (2020) Selecting appropriate machine learning methods for digital soil map**. Applied mathematical modelling, 81, 401–418. D’Oleire-Oltmanns, S; Marzolff I, Peter KD, Ries JB (2012) unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens 4:3390–3416

    Google Scholar 

  • Khaledian Y, Kiani F, Weindorf DC, Ebrahimi S (2013) Relationship of potentially labile soil organic carbon with soil quality indicators in deforested areas of Iran. Soil Horizons 54(4):1–11

    Article  Google Scholar 

  • Khan K, Iqbal J, Ali A, Khan SN (2020) Assessment of Sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal deforestation and carbon emissions estimation in the moist temperate forests of Pakistan. Appl Ecol Environ Res 18(1):783–815

    Article  Google Scholar 

  • Kuang B, Tekin Y, Mouazen AM (2015) Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil Tillage Res 146:243–252

    Article  Google Scholar 

  • Küçüktopcu E, Cemek B (2020) The use of artificial neural networks to estimate optimum insulation thickness, energy savings, and carbon dioxide emissions. Environ Prog Sustain Energy 40(1):e13478. https://doi.org/10.1002/ep.13478

    Article  Google Scholar 

  • Li XF, Chen ZB, Chen HB, Chen ZQ (2011) Spatial distribution of soil nutrients and their response to land use in eroded area of South China. Procedia Environ Sci 10:14–19

    Article  Google Scholar 

  • Li J, Pu L, Zhu M, Zhang J, Li P, Dai X, Liu L (2014) Evolution of soil properties following reclamation in coastal areas: a review. Geoderma 226:130–139

    Article  Google Scholar 

  • Li X, Xu X, Liu W, Xu C, Zhang R, Wang K (2019) Prediction of profile soil moisture for one land use using measurements at a soil depth of other land uses in a karst depression. J Soils Sediments 19(3):1479–1489

    Article  Google Scholar 

  • López-Granados F (2011) Weed detection for site-specific weed management: map** and real-time approaches. WeedRes 51(1):1–11

    Google Scholar 

  • Ma Z, Ai B, He R, Wang G, Niu Y, Yang M, Zhong Z (2020) Impact of UAV rotation on MIMO channel characterization for air-to-ground communication systems. IEEE Trans Veh Technol 69(11):12418–12431

    Article  Google Scholar 

  • Mahmoudabadi E, Sarmadian F, Nazary Moghaddam R (2015) Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). Int J Environ Sci Technol 12(10):3283–3298

    Article  Google Scholar 

  • Mahmoudabadi E, Karimi A, Haghnia GH, Sepehr A (2017) Digital soil map** using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environ Monit Assess 189(10):1–20

    Article  Google Scholar 

  • Mangewa LJ, Ndakidemi PA, Alward RD, Kija HK, Bukombe JK, Nasolwa ER, Munishi LK (2022) Comparative assessment of UAV and Sentinel-2 NDVI and GNDVI for preliminary diagnosis of habitat conditions in Burunge wildlife management area. Tanzania Earth 3(3):769–787. https://doi.org/10.3390/earth3030044

    Article  Google Scholar 

  • Meinen BU, Robinson DT (2021) Agricultural erosion modelling: evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environ Model Software 137:104962

    Article  Google Scholar 

  • Meron M, Tsipris J, Orlov V, Alchanatis V, Cohen Y (2010) Crop water stres map** for site-specific irrigation by thermal imagery and artificial reference surfaces. PrecisAgric 11(2):148–162

    Google Scholar 

  • Messina G, Peña JM, Vizzari M, Modica G (2020) A comparison of UAV and satellites multispectral imagery in monitoring onion crop. An application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens 12(20):3424. https://doi.org/10.3390/rs12203424

    Article  Google Scholar 

  • Miháliková M, Başkan O, Dengiz O (2015) Capability of different interpolation models and pedotransfer functions to estimate soil hydraulic properties in Büyükçay watershed. Environ Earth Sci 74(3):2425–2437. https://doi.org/10.1007/s12665-015-4246-5

    Article  Google Scholar 

  • Mishra U, Lal R, Liu D, Van Meirvenne M (2010) Predicting the spatial variation of the soil organic carbon Pool at a regional scale. Soil Sci Soc Am J 74(3):906–914. https://doi.org/10.2136/sssaj2009.0158

    Article  Google Scholar 

  • Mosleh Z, Salehi MH, Jafari A et al (2016) The effectiveness of digital soil map** to predict soil properties over low-relief areas. Environ Monit Assess 188:195. https://doi.org/10.1007/s10661-016-5204-8

    Article  Google Scholar 

  • Mousavi SM, Alavi AH, Gandomi AH, Mollahasani ALI (2011) Nonlinear genetic-based simulation of soil shear strength parameters. J Earth Syst Sci 120(6):1001–1022. https://doi.org/10.1007/s12040-011-0119-9

    Article  Google Scholar 

  • Nguyen TT, Pham TD, Nguyen CT, Delfos J, Archibald R, Dang KB, Hoang NB, Guo W, Ngo HH (2021) A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci Total Environ 804:150187

    Article  Google Scholar 

  • Park G, Park K, Song B, Lee H (2022) Analyzing impact of types of UAV-derived images on the object-based classification of land cover in an urban area. Drones 6(3):71

    Article  Google Scholar 

  • Pecina MV, Bergamo TF, Ward RD, Joyce CB (2021) Sepp K (2021) a novel UAV-based approach for biomass prediction and grassland structure assessment in coastal meadows. Ecol Indic 122:107227

    Article  Google Scholar 

  • Phillips R, Beeri O, Scholljegerdes E, Bjergaard J (2009) Hendrickson. Integration of geospatial and cattle nutrition information to estimate paddock grazing capacity in northern US prairie. Agric Syst 2009(100):72–79

    Article  Google Scholar 

  • Rodrigo-Comino J, Senciales JM, Cerdà A, Brevik EC (2018) The multidisciplinary origin of soil geography: a review. Earth-ScienceReviews 177:114–123

    Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 2015(61):85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  • Senseman GM, Bagley CF, Tweddale SA (1996) Correlation of rangeland cover measures to satellite-imagery-derived vegetation indices. Geocarto Int 11(3):29–38

    Article  Google Scholar 

  • Sergeev AP, Buevich AG, Baglaeva EM (2019) Shichkin AV (2019) combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA 174:425–435. https://doi.org/10.1016/j.catena.2018.11.037

    Article  Google Scholar 

  • Shabou M, Mougenot B, Lili-Chabaane Z, Walter C, Boulet G, Aissa N, Zribi M (2015) Soil clay content map** using a time series of Landsat TM data in semi-arid lands. Remote Sens 7:6059–6078

    Article  Google Scholar 

  • Stoner E, Baumgardner M, Biehl L, Robinson B (1980) Atlas of soil reflectance proprieties. West Lafayette, Purdue University, Indiana, Agricultural Experimental Station 1980:75p

    Google Scholar 

  • Tahraoui H, Amrane A, Belhadj AE, Zhang J (2022) Modeling the organic matter of water using the decision tree coupled with bootstrap aggregated and least-squares boosting. Environ Technol Innov 27:102419

    Article  Google Scholar 

  • Thorp KR, Tian LF (2004) A review on remotesensing of weeds in agriculture. Precis Agric 5(5):477–508

    Article  Google Scholar 

  • Trangmar BB, Yost RS, Uehara G (1986) Application of geostatistics to spatial studies of soil properties. Adv Agron 38:45–94

    Article  Google Scholar 

  • Vasques GM, Grunwald S, Harris WG (2010) Spectroscopic models of soil organic carbon in Florida, USA. J Environ Qual 39(3):923–934. https://doi.org/10.2134/jeq2009.0314

    Article  Google Scholar 

  • Vaudour E, Gomez C, Fouad Y, Lagacherie P (2019) Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens Environ 223:21–33

    Article  Google Scholar 

  • Wadoux AMC, Minasny B, McBratney AB (2020) Machine learning for digital soil map**: applications, challenges and suggested solutions. Earth Sci Rev 210:103359

    Article  Google Scholar 

  • Walkley A, Black AI (1934) An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Yogitha R, Mathivanan G (2018) Performance analysis of transfer functions in an artificial neural network. 2018 Int Conf Commun Signal Process (ICCSP) 2018:393–397. https://doi.org/10.1109/ICCSP.2018.8524387

    Article  Google Scholar 

  • Zeng Z, Li Y, Li Y, Luo Y (2022) Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol 23(1):1–23

    Article  Google Scholar 

  • Zeraatpisheh M, Ayoubi S, Jafari A, Tajik S, Finke P (2019) Digital map** of soil properties using multiple machine learning in a semi-arid region, Central Iran. Geoderma 338:445–452

    Article  Google Scholar 

  • Zhai Y, Thomasson JA, Boggess JE, Sui R (2006) Soil texture classification with artificial neural networks operating on remote sensing data. Comput Electron Agric 54(2):53–68. https://doi.org/10.1016/j.compag.2006.08.001

    Article  Google Scholar 

  • Zhang Y, Xu X (2022) Machine learning the central magnetic flux density of superconducting solenoids. Mater Technol 37(4):272–279

    Article  Google Scholar 

  • Zhao Z, Chow TL, Rees HW et al (2009) Predict soil texture distributions using an artificial neural network model. Comput Electron Agric 65:36–48. https://doi.org/10.1016/j.compag.2008.07.008

    Article  Google Scholar 

  • Zhao P, Lu D, Wang G, Liu L, Li D, Zhu J, Yu S (2016) Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int J Appl Earth Obs Geoinf 53:1–15

    Google Scholar 

  • Zou X, Haikarainen I, Haikarainen I, Mäkelä P, Mõttus M, Pellikka P (2018) Effects of crop leaf angle on LAI-sensitive narrow-band vegetation indices derived from imaging spectroscopy. Appl Sci 8(9):1435. https://doi.org/10.3390/app8091435

    Article  Google Scholar 

  • Agisoft LLC, St Petersburg R (2016) Agisoft photoscan professional edition. AgiSoft LLC

  • Ashqar HI, Elhenawy M, Rakha HA, Almannaa M, House L (2021) Network and station-level bike-sharing system prediction: a San Francisco bay area case study. J Intell Transp Syst:1–11

  • Ben Abbes A, Jarray N (2022) Unsupervised self-training method based on deep learning for soil moisture estimation using synergy of sentinel-1 and sentinel-2 images. Int J Image Data Fusion 1–14. https://doi.org/10.1080/19479832.2022.2106317

  • Bouyoucos GJ, Cook RL (1967) Measuring the relative humidity of soils at different moisture contents by the gray hydrolical hygrometer. Soil Sci 104(4):297–305

  • Butt FM, Hussain L, Jafri SHM, Lone KJ, Alajmi M, Abunadi I, Hamza MA (2022) Optimizing parameters of artificial intelligence deep convolutional neural networks (CNN) to improve prediction performance of load forecasting system. In IOP conference series: earth and environmental science (Vol. 1026, no. 1, p. 012028). IOP publishing

  • Cemek B, Arslan H, Küçüktopcu E, Simsek H (2022) Comparative analysis of machine learning techniques for estimating groundwater deuterium and oxygen-18 isotopes. Stoch Env Res Risk A. https://doi.org/10.1007/s00477-022-02262-7

  • Chen Y (1999) Correlation of salt bush cover measurements to tm wave bands and vegetation indices. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293). (5): 2590-2592

  • Climate-Data.org (2022) Climate data for cities world wide. https://trclimate-dataorg/asya/tuerkiye/kahramanmaras/kahramanmaras-244/ Accesseddate, 04 March 2022

  • Congedo L (2021) Semi-automatic classification plugin documentation (release 7.)

  • Dindaroğlu T, Gündoğan R, Gülci S (2017) Determination of the actual land use pattern using unmanned aerial vehicles and multispectral camera. Int Arch Photogramm Remote Sens Spat Inf Sci 42(4/W6)

  • ESRI (2010) ArcInfo user's guide. https://www.esri.com/library/brochures/pdfs/quick-start-arcgis-online-organizations.pdf, Accessed date: 29 March 2022

  • Gulcur F (1967) Physical and chemical analysing methods of soil. Istanbul University Faculty of Forestry, Publication number: 1970 / 201, Istanbul, Turkey

  • Hao Y, Wilamowski BM (2018) Levenberg–marquardt training. In: Intelligent systems. pp. 1–16

  • Haykin S (2004) Neural networks: a Comprehensive Foundation. Ieeexplore.Ieee.Org., 2004, https://ieeexplore.ieee.org/iel4/91/8807/x0153119.pdf Accesssed on 10 march 2004

  • Heinold S (2007) Tetracam Multi Camera Array (MCA) Installation and Operation

  • Heinold S (2022) Tetracam Multi Camera Array (MCA) Installation and Operation. https://tetracam.com/PDFs/MCA_User_Manual.pdf (Accessed on 12 May 2022)

  • Irmak A (1954) Soil exploration methods in the field and laboratory. IU publication no. 559, Faculty of Forestry Publication no. 27, Istanbul, 1954, 150 s

  • Isaaks H, Mohan R (1989) An introduction to applied Geostatistics. In Oxford University Press. https://doi.org/10.1016/0098-3004(91)90055-I

  • Jiaguo Q, Kerr Y (1994) Chehbouni, Abdelghani. External factor consideration in vegetation index development. In: CNES, Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing. 1994

  • Kılıç M, Gündoğan R, Günal H (2021) Development and applications of digital soil map**. In a. Ç. Korkmaz Bellitürk, Mehmet Fırat Baran (Ed.), new research in food for sustainability, environment, agroforestry and agriculture. IKSAD Publications (1):53–87)

  • Li G, Zhou X, Cao L (2021) Machine learning for databases. In The First International Conference on AI-ML-Systems (pp. 1-2)

  • Liu A, Wang J (2005) Monitoring desertification in arid and semi-arid areas of China with NOAA-AVHRR and MODIS data. Geoscience and Remote Sensing Symposium. IEEE, IGARSS '05

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. 437—475.In D.L. Sparks et al. (ed.) methods of soil analysis: part 3—chemical methods. SSSA book Ser. No. 5. SSSA and ASA Madison, WI

  • Loh WY (2002) Regression tress with unbiased variable selection and interaction detection. Stat Sin:361–386

  • Loh WY, Shih YS (1997) Split selection methods for classification trees. Stat Sin:815–840

  • MathWorks (2020) Learning hyperparameters using bayesian optimization. In: Statistics and Machine Learning Toolbox. https://in.mathworks.com/help/stats/bayesopt.html

  • MathWorks (2022a) Deep learning using Bayesian optimization. MathWorks, Inc.

  • MathWorks (2022b) Optimize a boosted regression ensemble. In: MathWorks, Inc. https://www.mathworks.com/help/stats/optimize-a-boosted-regression-ensemble.html

  • Naimi S, Ayoubi S, Demattê JAM et al (2021) Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto Int:1–24. https://doi.org/10.1080/10106049.2021.1996639

  • OTB Team (2018) OTB CookBook Documentation (Release 6.)

  • Qi J, Chehbouni AL, Huete AR, Kerr YH, Sorooshian S (1994) A Modified Soil Adjusted Vegetation Index (MSAVI). Int J Remote Sens 48:11–126

  • Richter DdeB, Bacon AR, Mobley ML, Richardson CJ, Andrews SS, West L, Wills S, Billings S, Cambardella CA, Cavallaro N, DeMeester JE, Franzluebbers AJ, Grandy AS, Grunwald S, Gruver J, Hartshorn AS, Janzen H, Kramer MG, Ladha JK, Zobeck TM (2011) Human-soil relations are changing rapidly: proposals from SSSA’s cross-divisional soil change working group. Soil Sci Soc Am J 75.6:2079–2084

  • Rumelhart D, Hinton G, Williams R (1985) Learning internal representations by error propagation. https://apps.dtic.mil/sti/citations/ADA164453

  • Senel G (2018) Delineation of water bodies with Landsat 8 and sentinel 2 satellite imagery using different image processing algorithms

  • Sentinel-hub. https://sentinel.esa.int/web/sentinel/userguides/sentinel-2-msi/overview, https://www.sentinel-hub.com/,Sinergise Ltd. (Accessed on 21March 2020)

  • Smith A, Freemantle J, Nadeau C, Wehn H, Zwick H, Miller J (2010) Leaf area index map generation using CHRIS data. Presentation given at the 3rd CHRIS Proba workshop. 2005, Accessed January 7, 2010. http://earth.esa.int/workshops/chris_proba_05/presentations/Session_2/04C.Nadeau_Session2.pdf

  • Soviany C (2003) Embedding data and task parallelism in image processing applications, PhD Thesis, Technische Univ. Delft.

  • Tetracam (2016) PixelWrench2 user guide. TetracamInc. 2016

  • Tetracam (2019) http://www.tetracam.com/Products_PixelWrench2.htm. 2019b, Accessed on 18Agust 2019

  • Tetracam (2022) PixelWrench2 user guide. Tetracam Inc. https://www.tetracam.com/PDFs/Tetracam_PixelWrench2_User_Guide.pdf (Accessed on 10 May 2022)

  • Xu Y, Lu X, Tian Y, Huang Y (2020) Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning. J Earthq Eng:1–21

  • Wu Z, Lei S, Bian Z, Huang J, Zhang Y (2019) Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region. Environ Earth Sci 78(6):1–13

  • Zheng Q, Siman K, Zeng Y, Teo HC, Sarira TV, Sreekar R, Koh LP (2022) Future land-use competition constrains natural climate solutions. Sci Total Environ 156409

Download references

Acknowledgments

Part of this study was presented as an oral presentation at the 4th International Workshop on Geoinformation Science: GeoAdvances 2017. Our thanks go to Dr. Sercan Gulci for the technical assistance.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

TD: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, Writing - original draft, Visualization, Writing - review & editing.

MK: Investigation, Data curation, Validation, Writing - review & editing.

EG: Investigation, Validation, Writing - review & editing.

RG: Conceptualization, Methodology, Supervision.

AEK: Conceptualization, Methodology, Writing - review & editing.

MS: Validation, Writing - review & editing.

Corresponding author

Correspondence to Turgay Dindaroğlu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dindaroğlu, T., Kılıç, M., Günal, E. et al. Multispectral UAV and satellite images for digital soil modeling with gradient descent boosting and artificial neural network. Earth Sci Inform 15, 2239–2263 (2022). https://doi.org/10.1007/s12145-022-00876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00876-7

Keywords

Navigation