Log in

New classes of quantum codes on closed orientable surfaces

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper we construct two classes of binary quantum error-correcting codes on closed orientable surfaces. These codes are derived from self-dual orientable embeddings of complete bipartite graphs and complete multipartite graphs on the corresponding closed orientable surfaces. We also show a table comparing the rate of these quantum codes when fixing the minimum distance to 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 2, 2493–2496 (1995)

    Article  Google Scholar 

  2. Calderbank, A.R., Rains, E., Shor, P.W., Sloane, N.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bombin, H., Martin-Delgado, M.A.: Optimal resources for topological two-dimensional stabilizer codes: Comparative study. Phys. Rev. A 76, 012305 (2007)

    Article  Google Scholar 

  4. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bombin, H., Martin-Delgado, M.A.: Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006)

    Article  Google Scholar 

  6. Leslie, M.: Hypermap-homology quantum codes. Int. J. Quantum Inf. 12, 1430001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bombin, H., Martin-Delgado, M.A.: Topological quantum error correction with optimal encoding rate. Phys. Rev. A 73, 062303 (2006)

    Article  Google Scholar 

  8. de Albuquerque, C.D., Junior, R.P., da Silva, E.B.: Construction of new toric quantum codes. Contemporary Math. 518, 1–9 (2010)

    Article  MathSciNet  Google Scholar 

  9. de Albuquerque, C.D., Palazzo, R. Jr, da Silva, E.B.: Topological quantum codes on compact surfaces with genus g2. J. Math. Phys. 50, 023513 (2009)

    Article  MathSciNet  Google Scholar 

  10. de Albuquerque, C.D., Palazzo, R. Jr, da Silva, E.B.: New classes of topological quantum codes associated with self-dual, quasi self-dual and denser tessellations. Quantum Inf. Comput. 10, 956–970 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE Trans. Inf. Theory 59, 5179–5185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nigg, D., Muller, M., Martinez, E.A., Schindler, P., Hennrich, M., Monz, T., Martin-Delgado, M.A., Blatt, R.: Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd, UK (2003)

  14. Edelsbrunner, H., Harer, J.: Computational topology, Duke University (2008)

  15. Ringel, G.: Map Color Theorem, Grundlehren Der Mathematischen Wissenschaften Bd. 209. Springer, New York (1974)

    Google Scholar 

  16. Archdeacon, D., Hartsfield, N.: Self-dual embeddings of complete bipartite graphs. J. Combin. Theory Ser. B 54, 249–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zemor, G.: On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction. In: Second International Workshop LNCS 5557, pp 259–273. Springer, Berlin (2009)

  18. Stillwell, J.: Geometry of Surfaces. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Beardon, A.: The Geometry of Discrete Groups. Springer, New York (1983)

    Book  MATH  Google Scholar 

  20. Vieira, V.L., Faria, M.B., Palazzo, R. Jr: Generalized edge-pairings for the family of hyperbolic tessellations {10λ, 2λ}. Comp. Appl. Math. 35, 29–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Derek, F.H., Bettina, E., Eamonn, A.O.: Handbook of computational group theory. Chapman and Hall/CRC, Boca Raton (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avaz Naghipour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we give an object-oriented package in Matlab to compute minimum distance of quantum codes derived from self-dual orientable embeddings of Ks, s for s ≥ 4. After finding the matrices HX and HZ using the method of rotation scheme [15] for constructing orientable embeddings of Ks, s, we can then determine the minimum distance of the associated quantum code. The following algorithm comes from [21].

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghipour, A. New classes of quantum codes on closed orientable surfaces. Cryptogr. Commun. 11, 999–1008 (2019). https://doi.org/10.1007/s12095-018-0347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0347-9

Keywords

Mathematics Subject Classification (2010)

Navigation