Log in

Urinary microRNAs expression in prostate cancer diagnosis: a systematic review

  • Research article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Circulating microRNAs (miRNAs) have been shown to have the potential as noninvasive diagnosis biomarkers in several types of cancers, including prostate cancer (PCa). Urine-based miRNA biomarkers have been researched as an alternative tool in PCa diagnosis. However, few studies have performed miRNA detection in urine samples from PCa patients, as well as low numbers of miRNAs have been assayed, and there is a lack of standard strategies for validation. In this context, we conducted an in-depth literature review focusing on miRNAs isolated from urine samples that may contribute to the diagnosis of PCa.

Methods

A systematic review was performed searching the PubMed, Lilacs and Cochrane Library databases for articles focused on the value of significantly deregulated miRNAs as biomarkers in PCa patients.

Results

Only 18 primary manuscripts were included in this review, according to the search criteria. Our results suggest that miR-21-5p, miR-141-3p, miR-375 and miR-574-3p should be considered as potential urinary biomarkers for the diagnosis of PCa.

Conclusion

These results suggested that large-scale prospective studies are still needed to validate our findings, using standardized protocols for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Payne H, Cornford P. Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol Semin Orig Investig. 2011;29:593–601.

    Google Scholar 

  3. Woolf SH. The accuracy and effectiveness of routine population screening with mammography, prostate-specific antigen, and prenatal ultrasound: a review of published scientific evidence. Int J Technol Assess Health Care. 2001;17:275–304.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman RM, Gilliland FD, Adams-Cameron M, Hunt WC, Key CR. Prostate-specific antigen testing accuracy in community practice. BMC Fam Pract. 2002;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  6. Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature. 2005;435:745–6.

    Article  CAS  PubMed  Google Scholar 

  7. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803:1231–43.

    Article  CAS  PubMed  Google Scholar 

  8. Wang YL, Wu S, Jiang B, Yin FF, Zheng SS, Hou SC. Role of MicroRNAs in prostate cancer pathogenesis. Clin Genitourin Cancer. 2015;13:261–70.

    Article  PubMed  Google Scholar 

  9. Esquela-kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balacescu O, Dumitrescu RG, Marian C. MicroRNAs role in prostate cancer. Methods Mol Biol. 2018;1856:103–17.

    Article  PubMed  CAS  Google Scholar 

  12. Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer. 2017;16:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rothschild SI. MicroRNA therapies in cancer. Mol Cell Ther. 2014;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yin C, Fang C, Weng H, Yuan C, Wang F. Circulating microRNAs as novel biomarkers in the diagnosis of prostate cancer: a systematic review and meta-analysis. Int Urol Nephrol. 2016;48:1087–95.

    Article  CAS  PubMed  Google Scholar 

  16. McDonald AC, Vira M, Shen J, Sanda M, Raman JD, Liao J, et al. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate. 2018;78:411–8.

    Article  CAS  PubMed  Google Scholar 

  17. Souza MF, Kuasne H, Barros-Filho MC, Cilião HL, Marchi FA, Fuganti PE, et al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS ONE. 2017;12:e0184094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fredsøe J, Rasmussen AKI, Thomsen AR, Mouritzen P, Høyer S, Borre M, et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus. 2018;4:825–33.

    Article  PubMed  Google Scholar 

  19. Stuopelyte K, Daniunaite K, Bakavicius A, Lazutka JR, Jankevicius F, Jarmalaite S. The utility of urine-circulating miRNAs for detection of prostate cancer. Br J Cancer. 2016;115:707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salido-Guadarrama AI, Morales-Montor JG, Rangel-Escareño C, Langley E, Peralta-Zaragoza O, Cruz Colin JL, et al. Urinary microRNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone. Mol Med Rep. 2016;13:4549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, et al. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol. 2014;192:252–9.

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, et al. MicroRNA profiling in prostate cancer - the diagnostic potential of urinary miR-205 and miR-214. PLoS One. 2013;8:e76994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korzeniewski N, Tosev G, Pahernik S, Hadaschik B, Hohenfellner M, Duensing S. Identification of cell-free microRNAs in the urine of patients with prostate cancer. Urol Oncol. 2015;33:16.e17–e22.

    Article  CAS  Google Scholar 

  25. Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, et al. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate. 2016;76:68–79.

    Article  CAS  PubMed  Google Scholar 

  26. Foj L, Ferrer F, Serra M, Arévalo A, Gavagnach M, Giménez N, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate. 2017;77:573–83.

    Article  CAS  PubMed  Google Scholar 

  27. Bryzgunova OE, Zaripov MM, Skvortsova TE, Lekchnov EA, Grigoreva AE, Zaporozhchenko IA, et al. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS ONE. 2016;11:e0157566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol. 2014;4:370.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Karatas OF, Guzel E, Suer I, Ekici ID, Caskurlu T, Creighton CJ, et al. MiR-1 and miR-133b are differentially expressed in patients with recurrent prostate cancer. PLoS ONE. 2014;9:e98675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.

    Article  PubMed  Google Scholar 

  31. Mekhail SM, Yousef PG, Jackinsky SW, Pasic M, Yousef GM. MiRNA in prostate cancer: new prospects for old challenges. EJIFCC. 2014;25:79–98.

    PubMed  PubMed Central  Google Scholar 

  32. Shah JS, Soon PS, Marsh DJ. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE. 2016;11:e0153200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:731479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brett SI, Kim Y, Biggs CN, Chin JL, Leong HS. Extracellular vesicles such as prostate cancer cell fragments as a fluid biopsy for prostate cancer. Prostate Cancer Prostatic Dis. 2015;18:213–20.

    Article  CAS  PubMed  Google Scholar 

  35. Ge Q, Zhou Y, Lu J, Bai Y, **e X, Lu Z. MiRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19:1568–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101:13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koppers-Lalic D, Hackenberg M, de Menezes R, Misovic B, Wachalska M, Geldof A, et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566–78.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77:1167–75.

    Article  CAS  PubMed  Google Scholar 

  39. Lekchnov EA, Amelina EV, Bryzgunova OE, Zaporozhchenko IA, Konoshenko MY, Yarmoschuk SV, et al. Searching for the novel specific predictors of prostate cancer in urine: the analysis of 84 miRNA expression. Int J Mol Sci. 2018;19:E4088.

    Article  PubMed  Google Scholar 

  40. El-Khoury V, Pierson S, Kaoma T, Bernardin F, Berchem G. Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci Rep. 2016;6:19529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunet-Vega A, Pericay C, Quílez ME, Ramírez-Lázaro MJ, Calvet X, Lario S. Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal Biochem. 2015;488:28–35.

    Article  CAS  PubMed  Google Scholar 

  42. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16:991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet. 2001;29:365–71.

    Article  CAS  PubMed  Google Scholar 

  45. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  46. Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. MiR-21-5p, miR-141-3p, and miR-205-5p levels in urine—promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019;79:88–95.

    Article  CAS  PubMed  Google Scholar 

  47. Balacescu O, Petrut B, Tudoran O, Feflea D, Balacescu L, Anghel A, et al. Urinary microRNAs for prostate cancer diagnosis, prognosis, and treatment response: are we there yet? Wiley Interdiscip Rev RNA. 2017;8:e1438.

    Article  CAS  Google Scholar 

  48. Schwarzenbach H, da Silva AM, Calin G, Pantel K. Data normalization strategies for microRNA quantification. Clin Chem. 2015;61:1333–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.

    Article  CAS  Google Scholar 

  50. Filella X, Foj L. MiRNAs as novel biomarkers in the management of prostate cancer. Clin Chem Lab Med. 2017;55:715–36.

    Article  CAS  PubMed  Google Scholar 

  51. Medina-Villaamil V, Martínez-Breijo S, Portela-Pereira P, Quindós-Varela M, Santamarina-Caínzoz I, Antón-Aparicio LM, et al. MicroARN circulantes en sangre de pacientes con cáncer de próstata. Actas Urológicas Españolas. 2014;38:633–9.

    Article  CAS  PubMed  Google Scholar 

  52. Sharma N, Baruah MM. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol. 2019;21:126–44.

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Guo JX, Shao ZQ. MiR-21 targets and inhibits tumor supressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med. 2017;10:87–91.

    Article  CAS  PubMed  Google Scholar 

  54. Li JZ, Li J, Wang HQ, Li X, Wen B, Wang YJ. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun. 2017;482:1381–6.

    Article  CAS  PubMed  Google Scholar 

  55. Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, et al. Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–603.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera MM, et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene. 2017;36:24–34.

    Article  CAS  PubMed  Google Scholar 

  57. Rodríguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Filella X, Foj L. Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers. Int J Mol Sci. 2016;17:E1784.

    Article  PubMed  CAS  Google Scholar 

  59. Wani S, Kaul D, Mavuduru RS, Kakkar N, Bhatia A. Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity. J Biotechnol. 2017;259:135–9.

    Article  CAS  PubMed  Google Scholar 

  60. Stephan C, Jung M, Rabenhorst S, Kilic E, Jung K. Urinary miR-183 and miR-205 do not surpass PCA3 in urine as predictive markers for prostate biopsy outcome despite their highly dysregulated expression in prostate cancer tissue. Clin Chem Lab Med. 2015;53:1109–18.

    CAS  PubMed  Google Scholar 

  61. Haj-Ahmad TA, Abdalla MAK, Haj-Ahmad Y. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5:182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guelfi G, Cochetti G, Stefanetti V, Zampini D, Diverio S, Boni A, et al. Next generation sequencing of urine exfoliated cells: an approach of prostate cancer microRNAs research. Sci Rep. 2018;8:7111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported partially by Hermes Pardini Group and Fundo de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre (FIPE/HCPA) (Grant No. 160539).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed for the article: RMP performed the literature search and data analysis, DAGZ and ISB drafted the manuscript and critically revised the work. BSN critically revised the work.

Corresponding author

Correspondence to I. S. Brum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval (research involving human participants and/or animals)

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, R.M., Zauli, D.A.G., Neto, B.S. et al. Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol 22, 2061–2073 (2020). https://doi.org/10.1007/s12094-020-02349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02349-z

Keywords

Navigation