Log in

Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  2. Singh DP, Singh HB, Prabha R (eds) (2016) Microbial inoculants in sustainable agricultural productivity. Functional applications, vol 2. Springer, Cham

    Google Scholar 

  3. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  4. Bera K, Dutta P, Sadhukhan S (2022) Plant responses under abiotic stress and mitigation options towards agricultural sustainability. In: Roy S, Mathur P, Chakraborty AP, Saha SP (eds) Plant stress: challenges and management in the new decade. Springer, Cham, pp 3–28

    Chapter  Google Scholar 

  5. He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dai A (2011) Drought under global warming: a review. Wires Clim Change 2:45–65

    Article  Google Scholar 

  7. Wasternack C, Hause B (2002) Jasmonates and octadecanoids: Signals in plant stress responses and development. In Prog Nucleic Acid Re J. Academic Press, vol 72, pp 165–221

  8. Ali S, Moon YS, Hamayun M, Khan MA, Bibi K, Lee IJ (2022) Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact 17:705–718

    Article  CAS  Google Scholar 

  9. Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sirari K, Kashyap L, Mehta CM (2016) Stress management practices in plants by microbes. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol 2: functional applications. Springer, India, pp 85–99

    Google Scholar 

  11. Chakraborty U, Chakraborty B (2015) Abiotic stresses in crop plants. CABI, Wallingford

    Book  Google Scholar 

  12. Rajkumar M, Bruno LB, Banu JR (2017) Alleviation of environmental stress in plants: the role of beneficial Pseudomonas spp. Crit Rev Environ Sci Technol 47:372–407

    Article  Google Scholar 

  13. Sandhya V, SK ZA, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  14. Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  15. Chieb M, Gachomo EW (2023) The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol 23:407

    Article  PubMed  PubMed Central  Google Scholar 

  16. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  17. Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61:201–209

    Article  CAS  Google Scholar 

  18. Ings J, Mur LA, Robson PR, Bosch M (2013) Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Front Plant Sci 4:468

    Article  PubMed  PubMed Central  Google Scholar 

  19. Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396

    Article  PubMed  PubMed Central  Google Scholar 

  20. Potopova V, Boroneanţ C, Boincean B, Soukup J (2016) Impact of agricultural drought on main crop yields in the Republic of Moldova. Int J Climatol 36:2063–2082

    Article  Google Scholar 

  21. Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  22. Driever SM, Baker NR (2011) The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted: operation of water-water cycle in leaves. Plant Cell Environ 34:837–846

    Article  CAS  PubMed  Google Scholar 

  23. Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Queval G, Neukermans J, Vanderauwera S, Van Breusegem F, Noctor G (2012) Day length is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis: day length interacts with CO2 and oxidative stress. Plant Cell Environ 35:374–387

    Article  CAS  PubMed  Google Scholar 

  25. Fischer BB, Hideg É, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18:2145–2162

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S (2021) Response mechanism of plants to drought stress. Horticulturae 7:50

    Article  Google Scholar 

  27. Hu Y, Wang B, Hu T, Chen H, Li H, Zhang W, Zhong Y, Hu H (2015) Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee Saplings. Acta Physiol Plant 37:84

    Article  Google Scholar 

  28. Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59:609–619

    Article  CAS  Google Scholar 

  29. Verslues PE, Sharma S (2010) Proline Metabolism and Its Implications for Plant-Environment Interaction. The Arabidopsis Book/American Society of Plant Biologists 8:e0140

    PubMed Central  Google Scholar 

  30. Fang Y, **ong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  31. Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266

    Article  Google Scholar 

  32. Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  34. Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycine betaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  35. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu H, **ong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  37. Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Hu B, Du S, Gao S, Chen X, Chen D (2016b) Proteomic analyses reveal the mechanism of dunaliellasalina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS ONE 11:e0153640

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Baloch FS, Mansoor S (2021) Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotechnol Biotechnol Equip 35:1912–1925

    Article  CAS  Google Scholar 

  41. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  42. Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P (2021) Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant 172:847–868

    Article  CAS  PubMed  Google Scholar 

  43. Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  44. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nolan T, Chen J, Yin Y (2017) Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J 474:2641–2661

    Article  CAS  PubMed  Google Scholar 

  46. Dubois M, Claeys H, Van den Broeck L, Inzé D (2017) Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ 40:180–189

    Article  CAS  PubMed  Google Scholar 

  47. Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69:2753–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637

    Article  CAS  PubMed  Google Scholar 

  50. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  51. Bérard A, Sassi MB, Kaisermann A, Renault P (2015) Soil microbial community responses to heat wave components: drought and high temperature. Clim Res 66:243–264

    Article  Google Scholar 

  52. Ahmad HM, Fiaz S, Hafeez S, Zahra S, Shah AN, Gul B, Aziz O, Mahmood-Ur-Rahman FA, Rafique M, Chen Y, Yang SH, Wang X (2022) Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: a review. Front Plant Sci 13:875774

    Article  PubMed  PubMed Central  Google Scholar 

  53. Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPR) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  54. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  55. Gontia-Mishra I, Sapre S, Deshmukh R, Sikdar S, Tiwari S (2020) Microbe-mediated drought tolerance in plants: current developments and future challenges. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 351–379

    Chapter  Google Scholar 

  56. Abdela AA, Barka GD, Degefu T (2020) Co-inoculation effect of Mesorhizobium ciceri and Pseudomonas fluorescens on physiological and biochemical responses of Kabuli chickpea (Cicer arietinum L.) during drought stress. Plant Physiol Rep 25:359–369

    Article  CAS  Google Scholar 

  57. Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  58. Zhang H, Murzello C, Sun Y, Kim MS, **e X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

  59. Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514

    Article  CAS  PubMed  Google Scholar 

  60. Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  61. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  Google Scholar 

  62. Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci USA 109:10931–10936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rossi F, Jullian V, Pawlowiez R, Kumar Roiné S, Haddad M, Darius HT, Gaertner-Mazouni N, Chinain M, Laurent D (2012) Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin. J Ethnopharmacol 143:33–40

    Article  CAS  PubMed  Google Scholar 

  64. Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847

    Article  CAS  Google Scholar 

  65. Carmen CA, Patricia P, Rubén B, Victoria SM (2016) Plant-rhizobacteria interaction and drought stress tolerance in plants. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants, vol 1: physiology and biochemistry. Springer, Cham, pp 287–308

    Chapter  Google Scholar 

  66. Kumar A, Patel JS, Meena VS, Srivastava R (2019) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal Agric Biotechnol 20:101271

    Article  Google Scholar 

  67. Li H, Guo Q, **g Y, Liu Z, Zheng Z, Sun Y, Xue Q, Lai H (2020) Application of Streptomyces pactum Act12 enhances drought resistance in wheat. J Plant Growth Regul 39:122–132

    Article  Google Scholar 

  68. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78. https://doi.org/10.1016/j.agee.2016.06.031

    Article  CAS  Google Scholar 

  70. Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain 5:100032

    Google Scholar 

  71. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  72. Ansari FA, Jabeen M, Ahmad I (2021) Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. Int J Environ Sci Technol 18:3855–3870

    Article  CAS  Google Scholar 

  73. Zheng W, Zeng S, Bais H, LaManna JM, Hussey DS, Jacobson DL, ** Y (2018) Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resour Res 54:3673–3687

    Article  Google Scholar 

  74. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  75. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086

    Article  PubMed  PubMed Central  Google Scholar 

  76. Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022

    Article  CAS  PubMed  Google Scholar 

  77. Subramaniam G, Thakur V, Saxena RK, Vadlamudi S, Purohit S, Kumar V, Rathore A, Chitikineni A, Varshney RK (2020) Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Sci Reps. 10:10294

    Article  CAS  Google Scholar 

  78. Khan N, Bano A (2019) Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE 14:e0222302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19:4045

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu F, Ma H, Peng L, Du Z, Ma B, Liu X (2019) Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress. AMB Express 9:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yasmin H, Nosheen A, Naz R, Bano A, Keyani R (2017) L-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.). J Plant Interact 12:567–578

    Article  Google Scholar 

  82. Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, Vaerenbergh JV, Tahzima R, Mayad EH, Chebli B (2019) Applications of new rhizobacteria pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci Rep 9:12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  84. Danish S, Zafar-ul-Hye M (2019) Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci Rep 9:5999

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chandra D, Srivastava R, Gupta VVSR, Franco CMM, Paasricha N, Saifi SK, Tuteja N, Sharma AK (2019) Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant Soil 441:261–281

    Article  CAS  Google Scholar 

  87. Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS (2020) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 10:4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang M, Yang L, Hao R, Bai X, Wang Y, Yu X (2020) Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 452:423–440

    Article  CAS  Google Scholar 

  89. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  90. Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807. https://doi.org/10.1111/tpj.13543

    Article  CAS  PubMed  Google Scholar 

  91. Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  PubMed  PubMed Central  Google Scholar 

  92. Niu X, Song L, **ao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nishu SD, No JH, Lee TK (2022) Transcriptional response and plant growth promoting activity of Pseudomonas fluorescens DR397 under drought stress conditions. Microbiol Spectr 10:e00979-e1022

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shinde S, Cumming JR, Collart FR, Noirot PH, Larsen PE (2017) Pseudomonas fluorescens transportome is linked to strain-specific plant growth promotion in aspen seedlings under nutrient stress. Front Plant Sci 8:348

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gaweska HM, Taylor AB, Hart PJ, Fitzpatrick PF (2013) Structure of the flavoprotein tryptophan 2-monooxygenase, a key enzyme in the formation of galls in plants. Biochemistry 52:2620–2626

    Article  CAS  PubMed  Google Scholar 

  97. Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut. Cocoa and Arecanut PLOS ONE 9:e104259

    Article  PubMed  Google Scholar 

  98. León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front Microbiol 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  100. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  101. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. On compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  103. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. Containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.)*1 *1Project supported by the Higher Education Commission, Islamabad, Pakistan (No. PIN 041 211534 A-031). Pedosphere 18:611–620

    Article  Google Scholar 

  104. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  105. Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G (2013) Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant 35:2299–2309

    Article  CAS  Google Scholar 

  106. Grover M, Madhubala R, Ali Sk Z, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. Strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  PubMed  Google Scholar 

  107. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  108. Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  109. Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  110. Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  111. Fan X, Hu H, Huang G, Huang F, Li Y, Palta J (2015) Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant Soil 390:337–349

    Article  CAS  Google Scholar 

  112. Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Di Serio C, Maserti B, Guerrieri E, Balestrini R (2018) The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front Plant Sci 9:1480

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA (2021) Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol Plant 172:463–476

    Article  CAS  PubMed  Google Scholar 

  114. Gowtham H, Brijesh Singh S, Murali M, Shilpa N, Melvin P, Mohammed A (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422

    Article  CAS  Google Scholar 

  115. Zarei T, Moradi A, Kazemeini SA, Akhgar A, Rahi AA (2020) The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. varsaccharata) productivity under limited availability of irrigation water. Sci Rep 10:20361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Borah A, Das R, Mazumdar R, Thakur D (2019) Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J Appl Microbiol 127:825–844

    Article  CAS  PubMed  Google Scholar 

  117. Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N (2020) Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol Res 232:126388

    Article  CAS  PubMed  Google Scholar 

  118. Prabhakar PK (2020) Bacterial siderophores and their potential applications: a review. Curr Mol Pharmacol 13:295–305

    Article  CAS  PubMed  Google Scholar 

  119. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: A review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  120. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  121. Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  122. Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145

    Article  Google Scholar 

  123. Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L (2021) PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst 4:618230

    Article  Google Scholar 

  124. Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front Microbiol 10:442191

    Article  Google Scholar 

  125. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  126. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fadiji AE, Orozco-Mosqueda MC, de los Santos-Villalobos S, Santoyo G, Babalola OO (2022) Recent developments in the application of plant growth-promoting drought adaptive rhizobacteria for drought mitigation. Plants 11:3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vardharajula SZ, Ali S (2014) Exopolysaccharideproduction by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. J Microbiol Biotechnol Food Sci 4:51

    Article  Google Scholar 

  130. Lu H, Hu Y, Wang C, Liu W, Ma G, Han Q, Ma D (2019) Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Front Plant Sci 10:1414

    Article  PubMed  PubMed Central  Google Scholar 

  131. Namwongsa J, Jogloy S, Vorasoot N, Boonlue S, Riddech N, Mongkolthanaruk W (2019) Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditi. J Microbiol Biotechnol 29:1777–1789

    Article  CAS  PubMed  Google Scholar 

  132. Ghosh D, Gupta A, Mohapatra S (2019) A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J Microbiol Biotechnol 35:90

    Article  PubMed  Google Scholar 

  133. Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84:512–519

    Article  CAS  Google Scholar 

  134. Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64:574–587

    Article  CAS  Google Scholar 

  135. Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native lavandula and salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  136. de Lima BC, Moro AL, Santos ACP, Bonifacio A, Araujo ASF, de Araujo FF (2019) Bacillus subtilis ameliorates water stress tolerance in maize and common bean. J Plant Interact 14:432–439

    Article  Google Scholar 

  137. Nascimento FX, Hernández AG, Glick BR, Rossi MJ (2020) Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol Rep 25:e00406

    Article  Google Scholar 

  138. Sood G, Kaushal R, Sharma M (2020) Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agric Scand Sect B Soil Plant Sci 70:361–370

    CAS  Google Scholar 

  139. Zhou C, Ma Z, Zhu L, **ao X, **e Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976

    Article  PubMed  PubMed Central  Google Scholar 

  140. Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Müller R, Moelbak L, Liu F, Roitsch T (2020) Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front Plant Sci 11:508886

    Article  Google Scholar 

  141. Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Author Correction: Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep. https://doi.org/10.1038/s41598-018-25174-5

    Article  PubMed  PubMed Central  Google Scholar 

  142. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  143. Hashem A, Tabassum B, Fathi Abd-Allah E (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang H, Sun X, Dai M (2022) Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Commun 3:100228

    Article  CAS  PubMed  Google Scholar 

  146. Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466

    Article  CAS  PubMed  Google Scholar 

  147. Park YS, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365

    Article  CAS  PubMed  Google Scholar 

  148. Singh D, Laxmi A (2015) Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6:895

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jiang Y, Cai Z, **e W, Long T, Yu H, Zhang Q (2012) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30:1059–1070

    Article  CAS  PubMed  Google Scholar 

  150. Vikram P, Kumar A, Singh AK, Singh NK (2012) Rice: genomics-assisted breeding for drought tolerance. In: Tuteja SS, Gill AF, Tiburico R (eds) Improving Crop Tolerance to Abiotic Stress. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, pp 715–731

    Chapter  Google Scholar 

  151. Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R (2022) Physiological and multi-omics approaches for explaining drought stress tolerance and supporting sustainable production of rice. Front Plant Sci 12:803603

    Article  PubMed  PubMed Central  Google Scholar 

  152. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  153. Akpinar BA, Kantar M, Budak H (2015) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 15:587–598

    Article  CAS  PubMed  Google Scholar 

  154. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  155. Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant-Microbe Interact 29:484–495

    Article  CAS  PubMed  Google Scholar 

  156. Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913

    Article  PubMed  PubMed Central  Google Scholar 

  157. Silva-Sanchez C, Li H, Chen S (2015) Recent advances and challenges in plant phosphoproteomics. Proteomics 15:1127–1141

    Article  CAS  PubMed  Google Scholar 

  158. Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM (2005) Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett 242:127–136

    Article  CAS  PubMed  Google Scholar 

  159. Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71:51–59

    Article  CAS  PubMed  Google Scholar 

  160. Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Department of Life Sciences, Dibrugarh University for providing infrastructure facilities. We are also thankful to all the scholars of Microbiology Laboratory for their help and support.

Funding

No fund has been received during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design of the manuscript. All authors have equal contribution to the manuscript.

Corresponding author

Correspondence to Ratul Nath.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buragohain, K., Tamuly, D., Sonowal, S. et al. Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian J Microbiol 64, 287–303 (2024). https://doi.org/10.1007/s12088-024-01201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-024-01201-0

Keywords

Navigation