Log in

Sulforaphane reduces apoptosis and oncosis along with protecting liver injury-induced ischemic reperfusion by activating the Nrf2/ARE pathway

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine the effect of sulforaphane (SFN) on hepatic ischemia reperfusion injury (HIRI) and to explore the underlying mechanisms.

Methods

The rat model of HIRI was established. Thirty-two rats were randomly divided into sham (A), SFN (B), HIRI (C), and SFN + HIRI (D) groups. Animals in the HIRI and Sham groups were treated with equal volumes of the vehicle of SPF. Liver functions were evaluated by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Liver samples were collected for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels. Mitochondrial Na+–K+-ATPase and Ca2+-ATPase were measured by colorimetry. Expression levels of NQO1, Nrf2, and HO-1 in liver tissue were detected by western blot analysis. Additionally, oncosis and apoptosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis.

Results

The HIRI group showed a significant increase in serum levels of liver enzymes (ALT, AST) associated with histopathological damage in the liver. Pre-treatment with SFN could reduce the levels of MDA and MPO in liver tissue and improve the activities of SOD, GSH, GSH-Px, and mitochondrial Na+–K+-ATPase and Ca2+-ATPase in liver tissue. Moreover, SFN could still increase the expression of NQO1, Nrf2, and HO-1 in liver tissue and decrease the oncosis and apoptosis of liver cells.

Conclusions

Pre-treatment with SFN could attenuate HIRI via the activation of Nrf2/ARE signaling pathways, ameliorate oxidative stress, and maintain the normal activities of Na+–K+-ATPase and Ca2+-ATPase, thus reducing the occurrence of cell oncosis and apoptosis. Therefore, SFN can be considered a potential candidate as an anti-ischemic medication to minimize HIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia–reperfusion injury. Am J Surg 2001;181(2):160–166

    Article  CAS  PubMed  Google Scholar 

  2. Galaris D, Barbouti A, Korantzopoulos P. Oxidative stress in hepatic ischemia–reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des 2006;12(23):2875–2890

    Article  CAS  PubMed  Google Scholar 

  3. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 2011;26(Suppl 1):173–179

    Article  CAS  PubMed  Google Scholar 

  4. Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia–reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012;26(2):103–114

    Article  Google Scholar 

  5. van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012;52(8):1382–1402

    Article  PubMed  Google Scholar 

  6. Bir SC, Kolluru GK, Fang K, Kevil CG. Redox balance dynamically regulates vascular growth and remodeling. Semin Cell Dev Biol 2012;23(7):745–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ohnuma T, Nakayama S, Anan E, Nishiyama T, Ogura K, Hiratsuka A. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Toxicol Appl Pharmacol 2010;244(1):27–36

    Article  CAS  PubMed  Google Scholar 

  8. Yan D, Dong J, Sulik KK, Chen SY. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochem Pharmacol 2010;80(1):144–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH. Sulforaphane protects kidneys against ischemia–reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 2008;75(11):2214–2223

    Article  CAS  PubMed  Google Scholar 

  10. Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, et al. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 2012;52(5):928–936

    Article  CAS  PubMed  Google Scholar 

  11. Kuo PC, Drachenberg CI, de la Torre A, Bartlett ST, Lim JW, Plotkin JS, et al. Apoptosis and hepatic allograft reperfusion injury. Clin Transplant 1998;12(3):219–223

    CAS  PubMed  Google Scholar 

  12. Leppo J. Imaging cell injury and death. Curr Cardiol Rep 2003;5(1):40–44

    Article  PubMed  Google Scholar 

  13. Guicciardi ME, Malhi H, Mott JL, Gores GJ. Apoptosis and necrosis in the liver. Compr Physiol 2013;3(2):977–1010

    PubMed  Google Scholar 

  14. Lin S, Liu K, Wu W, Chen C, Wang Z, Zhang X. Study on pre-treatment of FPS-1 in rats with hepatic ischemia–reperfusion injury. Am J Chin Med 2009;37(2):323–337

    Article  CAS  PubMed  Google Scholar 

  15. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 2012;64(5):503–508

    Article  PubMed  Google Scholar 

  16. Zhao HD, Zhang F, Shen G, Li YB, Li YH, **g HR, et al. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2–ARE pathway. World J Gastroenterol 2010;16(24):3002–3010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cekauskas A, Bruns H, Manikas M, Herr I, Gross ML, Zorn M, et al. Sulforaphane decreases kidney injury after transplantation in rats: role of mitochondrial damage. Ann Transplant 2013;18:488–496

    Article  PubMed  Google Scholar 

  18. Li Z, Galli U, Becker LE, Bruns H, Nickkolgh A, Hoffmann K, et al. Sulforaphane protects hearts from early injury after experimental transplantation. Ann Transplant 2013;18:558–566

    Article  PubMed  Google Scholar 

  19. ** Z, Liu W, Kang Z, Cai J, Wang Q, Cheng N, et al. Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res 2010;1343:178–185

    Article  CAS  PubMed  Google Scholar 

  20. Borski RJ, Hodson RG. Fish research and the institutional animal care and use committee. ILAR J 2003;44(4):286e94

    Article  Google Scholar 

  21. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 1993;55(6):1265–1272

    Article  CAS  PubMed  Google Scholar 

  22. Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol 1999;37(9–10):973–979

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann K, Büchler MW, Schemmer P. Supplementation of amino acids to prevent reperfusion injury after liver surgery and transplantation—where do we stand today? Clin Nutr 2011;30(2):143–147

    Article  CAS  PubMed  Google Scholar 

  24. Glantzounis GK, Salacinski HJ, Yang W, Davidson BR, Seifalian AM. The contemporary role of antioxidant therapy in attenuating liver ischemia–reperfusion injury: a review. Liver Transpl 2005;11(9):1031–1047

    Article  PubMed  Google Scholar 

  25. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation—from bench to bedside. Nat Rev Gastroenterol Hepatol 2013;10(2):79–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1–Nrf2–ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012;32(4):687–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009;11(6):1373–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yorozuya T, Adachi N, Dote K, Nakanishi K, Takasaki Y, Arai T. Enhancement of Na+, K(+)-ATPase and Ca(2+)-ATPase activities in multi-cycle ischemic preconditioning in rabbit hearts. Eur J Cardiothorac Surg 2004;26(5):981–987

    Article  PubMed  Google Scholar 

  29. Yue R, Hu H, Yiu KH, Luo T, Zhou Z, Xu L, et al. Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes. PLoS ONE 2012;7(11):e50778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995;38(3):357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Science and Technology Project Foundation of Guangdong Province, China (No. 2011B031800361).

Compliance with ethical requirements and Conflict of interest

Animal care and surgical procedures were approved by the Institutional Review Board of Sun Yat-sen University under the guidelines of the Chinese Academy of Sciences and carried out in accordance with the provisions of the NIH Guide for the Care and Use of Laboratory Animals. **n** Chi, Rui Zhang, Ning Shen, Yi **, Ayep Alina, Simin Yang and Shiqing Lin declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqing Lin.

Additional information

**n** Chi and Rui Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Zhang, R., Shen, N. et al. Sulforaphane reduces apoptosis and oncosis along with protecting liver injury-induced ischemic reperfusion by activating the Nrf2/ARE pathway. Hepatol Int 9, 321–329 (2015). https://doi.org/10.1007/s12072-014-9604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-014-9604-y

Keywords

Navigation