Log in

Robot-assisted totally endoscopic coronary bypass surgery

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Totally endoscopic coronary artery bypass (TECAB) surgery can exclusively be undertaken with the aid of operative robots. In the past two decades, surgical remote manipulator systems—predominantly the daVinci® devices—have brought us the reality of endoscopic internal mammary artery harvesting and coronary bypass anastomoses via minimally invasive thoracic port access. Single up to quadruple TECAB interventions are recently feasible; the procedure can be delivered either as beating heart applying endoscopic vacuum stabilizer or under cardioplegic arrest on heart-lung machine. Significant surgical team learning curves are involved in a stepwise development of these complex procedures, including intense dry- and wet-lab trainings, endoscopic internal mammary artery harvesting and manual coronary anastomosis building through a thoracotomy. Increasing number of papers have been published regarding clinical TECAB series in the past decade. In arrested heart TECAB procedures on cardiopulmonary bypass, the conversion rate from port access to larger thoracic incision measures 15.1% and no perioperative mortality is observed in published records. Stroke, kidney failure and atrial fibrillation rates stay at 0.6, 0.4 and 12.9%, respectively. Analysis of beating heart TECAB procedures revealed a conversion rate of 15.3%, perioperative mortality 0.4%, stroke 0.3%, kidney failure 0.6% and atrial fibrillation 9.2%. Additionally, due to the obviously smaller surgical trauma, a remarkable fast return to normal daily activities can be demonstrated in clinical series of robotic assisted coronary bypass surgery. Short-term freedom of major adverse cardiac and cerebral events (MACCE) stays over 90%. Long-term studies reveal 5-year freedom of MACCE in the 75.2 to 83.1% range. Nowadays, total endoscopic coronary artery bypass grafting is a feasible and reproducible surgical method. Advanced hybrid coronary interventions offer complex multivessel TECAB with support of percutaneous coronary interventions (PCI). Combination of the above techniques widens the spectrum of minimally invasive therapeutic solutions concerning multivessel procedure including bilateral internal mammary grafts and drug-eluting stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stevens J, Burdon T, Siegel L, et al. Port-access coronary artery bypass with cardioplegic arrest: acute and chronic canine studies. Ann Thorac Surg. 1996;62:435–41.

    Article  PubMed  CAS  Google Scholar 

  2. Loulmet D, Carpentier A, d’Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–10.

    Article  PubMed  CAS  Google Scholar 

  3. Lehr EJ, Grigore A, Reicher B, et al. Dual console robotic system to teach beating heart total endoscopic coronary artery bypass grafting: a video presentation. Interact Cardiovasc Thorac Surg. 2010;8:S113–4.

    Google Scholar 

  4. Argenziano M, Katz M, Bonatti J, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg. 2006;81:1666–74.

    Article  PubMed  Google Scholar 

  5. Bonatti J, Schachner T, Bernecker O, Chevtchik O, Bonaros N, Ott H, et al. Robotic totally endoscopic coronary artery bypass: program development and learning curve issues. J Thorac Cardiovasc Surg. 2004;127:504–10.

    Article  PubMed  CAS  Google Scholar 

  6. Balkhy HH, Nathan S, Arnsdorf SE, Krienbring DJ. Right internal mammary use in 140 robotic totally endoscopic coronary bypass cases: toward multiarterial grafting. Innovations. 2017;12:9–14.

    PubMed  Google Scholar 

  7. Falk V, Diegeler A, Walther T, et al. Total endoscopic computer enhanced coronary artery bypass grafting. Eur J Cardiothorac Surg. 2000;17:38–45.

    Article  PubMed  CAS  Google Scholar 

  8. Dogan S, Aybek T, Andressen E, et al. Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: report of forty-five cases. J Thorac Cardiovasc Surg. 2002;123:1125–31.

    Article  PubMed  CAS  Google Scholar 

  9. Reuthebuch O, Comber M, Grünenfelder J, Zünd G, Turina M. Experiences in robotically enhanced IMA-preparation as initial step towards totally endoscopic coronary artery bypass grafting. Cardiovasc Surg. 2003;11:483–7.

    Article  PubMed  CAS  Google Scholar 

  10. Kiaii B, McClure RS, Stitt L, Rayman R, Dobkowski WB, Jablonsky G, et al. Prospective angiographic comparison of direct, endoscopic, and telesurgical approaches to harvesting the internal thoracic artery. Ann Thorac Surg. 2006;82:624–8.

    Article  PubMed  Google Scholar 

  11. Oehlinger A, Bonaros N, Schachner T, et al. Robotic endoscopic left internal mammary artery harvesting: what have we learned after 100 cases? Ann Thorac Surg. 2007;83:1030–4.

    Article  PubMed  Google Scholar 

  12. Cheng N, Gao C, Yang M, Wu Y, Wang G, **ao C. Analysis of the learning curve for beating heart, totally endoscopic, coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2014;148:1832–6.

    Article  PubMed  Google Scholar 

  13. Srivastava S, Barrera R, Quismundo S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann Thorac Surg. 2012;94:1463–8.

    Article  PubMed  Google Scholar 

  14. Bayramoglu Z, Caynak B, Ezelsoy M, Oral K, Sagbas E, Akpınar B. Angiographic evaluation of graft patency in robotic-assisted coronary artery bypass surgery: 8 year follow-up. Int J Med Robot. 2014;10:121–7.

    Article  PubMed  Google Scholar 

  15. Hemli JM, Henn LW, Panetta CR, et al. Defining the learning curve for robotic-assisted endoscopic harvesting of the left internal mammary artery. Innovations. 2013;8:353–8.

    PubMed  Google Scholar 

  16. Bonatti J, Schachner T, Bonaros N, et al. Technical challenges in totally endoscopic robotic coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2006;131:146–53.

    Article  PubMed  CAS  Google Scholar 

  17. Derose JJ, Balaram SK, Ro C, et al. Mid-term results and patient perceptions of robotically-assisted coronary artery bypass grafting. Interact Cardiovasc Thorac Surg. 2005;4:406–11.

    Article  PubMed  Google Scholar 

  18. Subramanian VA, Patel NU, Patel NC, Loulmet DF. Robotic assisted multivessel minimally invasive direct coronary artery bypass with port-access stabilization and cardiac positioning: paving the way for outpatient coronary surgery? Ann Thorac Surg. 2005;79:1590–6.

    Article  PubMed  Google Scholar 

  19. Daniel WT, Liberman HA, Kilgo P, et al. The impact of clopidogrel therapy on postoperative bleeding after robotic-assisted coronary artery bypass surgery. Eur J Cardiothorac Surg. 2014;46:8–13.

    Article  Google Scholar 

  20. Turner WF, Sloan JH. Robotic-assisted coronary artery bypass on a beating heart: initial experience and implications for the future. Ann Thorac Surg. 2006;82:790–4.

    Article  PubMed  Google Scholar 

  21. Srivastava S, Gadasalli S, Agusala M, et al. Use of bilateral internal thoracic arteries in CABG through lateral thoracotomy with robotic assistance in 150 patients. Ann Thorac Surg. 2006;81:800–6.

    Article  PubMed  Google Scholar 

  22. Kon ZN, Brown EN, Tran R, et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. J Thorac Cardiovasc Surg. 2008;135:367–75.

    Article  PubMed  Google Scholar 

  23. Poston RS, Tran R, Collins M, et al. Comparison of economic and patient outcomes with minimally invasive versus traditional off-pump coronary artery bypass grafting techniques. Ann Surg. 2008;248:638–46.

    PubMed  PubMed Central  Google Scholar 

  24. Halkos ME, Liberman HA, Devireddy C, et al. Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2014;147:179–85.

    Article  PubMed  Google Scholar 

  25. Fujita T, Hata H, Shimahara Y, Sato S, Kobayashi J. Initial experience with internal mammary artery harvesting with the da Vinci Surgical System for minimally invasive direct coronary artery bypass. Surg Today. 2014;44:2281–6.

    Article  PubMed  Google Scholar 

  26. Yang M, Wu Y, Wang G, **ao C, Zhang H, Gao C. Robotic total arterial off-pump coronary artery bypass grafting: seven-year single-center experience and long-term follow-up of graft patency. Ann Thorac Surg. 2015;100:1367–73.

    Article  PubMed  Google Scholar 

  27. Bonatti J, Alfadlhi J, Schachner T, Bonaros N, Rützler E, Laufer G. Do manual assisting maneuvers increase speed and technical performance in robotically sutured coronary bypass graft anastomoses? Surg Endosc. 2007;21:1715–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bolton JW, Connally JE. Results of a phase one study on robotically assisted myocardial revascularization on the beating heart. Ann Thorac Surg. 2004;78:154–8.

    Article  PubMed  Google Scholar 

  29. Schachner T, Bonaros N, Ruetzler E, et al. Myocardial enzyme release in totally endoscopic coronary artery bypass grafting on the arrested heart. J Thorac Cardiovasc Surg. 2007;134:1006–11.

    Article  PubMed  CAS  Google Scholar 

  30. Bonatti J, Schachner T, Bonaros N, et al. Robotic totally endoscopic double-vessel bypass grafting: a further step toward closed-chest surgical treatment of multivessel coronary artery disease. Heart Surg Forum. 2007;10:E239–42.

    Article  PubMed  Google Scholar 

  31. Bonatti J, Rehman A, Schwartz K, et al. Robotic totally endoscopic triple coronary artery bypass grafting on the arrested heart: report of the first successful clinical case. Heart Surg Forum. 2010;13:E394–6.

    Article  PubMed  Google Scholar 

  32. Bonatti J, Schachner T, Bonaros N, Laufer G. A new exposure technique for the circumflex coronary artery system in robotic totally endoscopic coronary artery bypass grafting. Interact Cardiovasc Thorac Surg. 2006;5:279–81.

    Article  PubMed  Google Scholar 

  33. Falk V, Diegeler A, Walther T, Jacobs S, Raumans J, Mohr FW. Total endoscopic off-pump coronary artery bypass grafting. Heart Surg Forum. 2000;3:29–31.

    PubMed  CAS  Google Scholar 

  34. de Canniere D, Wimmer-Greinecker G, Cichon R, et al. Feasibility, safety, and efficacy of totally endoscopic coronary artery bypass grafting: multicenter European experience. J Thorac Cardiovasc Surg. 2007;134:710–6.

    Article  PubMed  Google Scholar 

  35. Bonatti J, Schachner T, Bonaros N, et al. Effectiveness and safety of total endoscopic left internal mammary artery bypass graft to the left anterior descending artery. Am J Cardiol. 2009;104:1684–88.

    Article  PubMed  Google Scholar 

  36. Zaouter C, Imbault J, Labrousse L, et al. Association of robotic totally endoscopic coronary artery bypass graft surgery associated with a preliminary cardiac enhanced recovery after surgery program: a retrospective analysis. J Cardiothorac Vasc Anesth. 2015;29:1489–97.

    Article  PubMed  Google Scholar 

  37. Weidinger F, Schachner T, Bonaros N, et al. Predictors and consequences of postoperative atrial fibrillation following robotic totally endoscopic coronary bypass surgery. Eur J Cardiothorac Surg. 2014;45:318–22.

    Article  PubMed  Google Scholar 

  38. Shroyer AL, Grover FL, Hattler B, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361:1827–37.

    Article  PubMed  CAS  Google Scholar 

  39. Kozora E, Kongs S, Collins JF, et al. Cognitive outcomes after on- versus off-pump coronary artery bypass surgery. Ann Thorac Surg. 2010;90:1134–41.

    Article  PubMed  Google Scholar 

  40. Kappert U, Cichon R, Gulielmos V, et al. Robotic-enhanced Dresden technique for minimally invasive bilateral internal mammary artery grafting. Heart Surg Forum. 2000;3:319–21.

    PubMed  CAS  Google Scholar 

  41. Boyd WD, Rayman R, Desai ND, et al. Closed-chest coronary artery bypass grafting on the beating heart with the use of a computer-enhanced surgical robotic system. J Thorac Cardiovasc Surg. 2000;120:807–9.

    Article  PubMed  CAS  Google Scholar 

  42. Loisance DY, Nakashima K, Kirsch M. Computer-assisted coronary surgery: lessons from an initial experience. Interact Cardiovasc Thorac Surg. 2005;4:398–401.

    Article  PubMed  Google Scholar 

  43. Srivastava S, Gadasalli S, Agusala M, et al. Robotically assisted beating heart totally endoscopic coronary artery bypass (TECAB). Is there a future? Innovations. 2008;3:52–8.

    Article  PubMed  Google Scholar 

  44. Srivastava S, Gadasalli S, Agusala M, et al. Beating heart totally endoscopic coronary artery bypass. Ann Thorac Surg. 2010;89:1873–80.

    Article  PubMed  Google Scholar 

  45. Balkhy HH, Wann LS, Krienbring D, Arnsdorf SE. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach: review of 120 cases. Ann Thorac Surg. 2011;92:821–7.

    Article  PubMed  Google Scholar 

  46. Dhawan R, Roberts JD, Wroblewski K, Katz JA, Raman J, Chaney MA. Multivessel beating heart robotic myocardial revascularization increases morbidity and mortality. J Thorac Cardiovasc Surg. 2012;143:1056–61.

    Article  PubMed  Google Scholar 

  47. Bonatti J, Garcia J, Rehman A, et al. On-pump beating-heart with axillary artery perfusion: a solution for robotic totally endoscopic coronary artery bypass grafting? Heart Surg Forum. 2009;12:E131–3.

    Article  PubMed  Google Scholar 

  48. Patel NC, Patel NU, Loulmet DF, McCabe JC, Subramanian VA. Emergency conversion to cardiopulmonary bypass during attempted off-pump revascularization results in increased morbidity and mortality. J Thorac Cardiovasc Surg. 2004;128:655–61.

    Article  PubMed  Google Scholar 

  49. Lehr EJ, Odonkor P, Reyes P, Bonatti J. Minimized extracorporeal circulation for the robotic totally endoscopic coronary artery bypass grafting hybrid procedure. Can J Cardiol. 2010;26:286–7.

    Article  Google Scholar 

  50. Jegaden O, Wautot F, Sassard T, et al. Is there an optimal minimally invasive technique for left anterior descending coronary artery bypass? J Cardiothorac Surg. 2011;6:37.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kappert U, Cichon R, Tugtekin SM, Schueler S. Closed chest coronary artery bypass on the beating heart. Heart Surg Forum. 2001;4:89–90.

    PubMed  CAS  Google Scholar 

  52. Schachner T, Bonaros N, Wiedemann D, et al. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann Thorac Surg. 2009;88:523–7.

    Article  PubMed  Google Scholar 

  53. Katz MR, Van Praet F, de Canniere D, et al. Integrated coronary revascularization: percutaneous coronary intervention plus robotic totally endoscopic coronary artery bypass. Circulation. 2006;114:473–I476.

    Article  Google Scholar 

  54. Bonatti J, Schachner T, Bonaros N, et al. Treatment of double vessel coronary artery disease by totally endoscopic bypass surgery and drug-eluting stent placement in one simultaneous hybrid session. Heart Surg Forum. 2005;8:E284–6.

    Article  PubMed  CAS  Google Scholar 

  55. Jansens JL, De Croly P, De Cannière D. Robotic hybrid procedure and triple-vessel disease. J Card Surg. 2009;24:449–50.

    Article  PubMed  Google Scholar 

  56. Bonatti J, Lehr E, Vesely MR, Friedrich G, Bonaros N, Zimrin D. Hybrid coronary revascularization: which patients? When? How? Curr Opin Cardiol. 2010;25:568–74.

    Article  PubMed  Google Scholar 

  57. Bonatti JO, Zimrin D, Lehr EJ, et al. Hybrid coronary revascularisation using robotic totally endoscopic surgery; perioperative outcomes and 5-year results. Ann Thorac Surg. 2012;94:1920–6.

    Article  PubMed  Google Scholar 

  58. Srivastava MC, Vesely MR, Lee JD, et al. Robotically assisted hybrid coronary revascularisation: does sequence of intervention matter? Innovations. 2013;8:177–83.

    Article  PubMed  Google Scholar 

  59. Bonaros N, Schachner T, Wiedemann D, et al. Quality of life improvement after robotically assisted coronary artery bypass grafting. Cardiology. 2009;114:59–66.

    Article  PubMed  Google Scholar 

  60. Kappert U, Tugtekin SM, Cichon R, Braun M, Matschke K. Robotic totally endoscopic coronary artery bypass: a word of caution implicated by a five-year follow-up. J Thorac Cardiovasc Surg. 2008;135:857–62.

    Article  PubMed  Google Scholar 

  61. Currie ME, Romsa J, Fox SA, et al. Long-term angiographic follow-up of robotic-assisted coronary artery revascularization. Ann Thorac Surg. 2012;93:1426–31.

    Article  PubMed  Google Scholar 

  62. Bonaros N, Schachner T, Lehr E, et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety. Ann Thorac Surg. 2013;95:803–12.

    Article  PubMed  Google Scholar 

  63. Hemli JM, Darla LS, Panetta CR, Jennings J, Subramanian VA, Patel NC. Does body mass index affect outcomes in robotic-assisted coronary artery bypass procedures? Innovations. 2012;7:350–3.

    PubMed  Google Scholar 

  64. Wiedemann D, Schachner T, Bonaros N, et al. Robotic totally endoscopic coronary artery bypass grafting in men and women: are there sex differences in outcome? Ann Thorac Surg. 2013;96:1643–7.

    Article  PubMed  Google Scholar 

  65. Serruys PW, Ong AT, van Herwerden LA, et al. Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease: the final analysis of the Arterial Revascularization Therapies Study (ARTS) randomized trial. J Am Coll Cardiol. 2005;46:575–81.

    Article  PubMed  Google Scholar 

  66. Serruys PW, Morice M, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.

    Article  PubMed  CAS  Google Scholar 

  67. Cao C, Indraratna P, Doyle M, et al. A systematic review on robotic coronary artery bypass graft surgery. Ann Cardiothorac Surg. 2016;5:530–43.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seco M, Edelman JJ, Yan TD, Wilson MK, Bannon PG, Vallely MP. Systematic review of robotic-assisted, totally endoscopic coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2:408–18.

    PubMed  PubMed Central  Google Scholar 

  69. Canale LS, Mick S, Mihaljevic T, Nair R, Bonatti J. Robotically assisted totally endoscopic coronary artery bypass surgery. J Thorac Dis. 2013;5:641–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Göbölös.

Ethics declarations

This review article summarizes and analyses outcomes of several robot-assisted TECAB work groups, utilizing data from current medical literature. Therefore, provision of ethical clearance for publications of third parties is not applicable, albeit we assume that the reviewed papers completely fulfilled the above commitment at the original article submissions.

This review article is not directly involved in basic science and/or clinical research; hence, patient or animal rights are not breached; possession of informed consent is not applicable as well.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göbölös, L., Ramahi, J., Obeso, A. et al. Robot-assisted totally endoscopic coronary bypass surgery. Indian J Thorac Cardiovasc Surg 34 (Suppl 2), 94–104 (2018). https://doi.org/10.1007/s12055-017-0604-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-017-0604-0

Keywords

Navigation