Log in

Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmad T, Tanaka T, Sachan H K and Mukherjee B 2006 Petrogenesis of coesite bearing Tso Morari eclogites; Isotopic and elemental constrains in 21 Himalayan Karakoram-Tibet workshop, S.I.; Abstract volume, J. Asian Earth Sci. 26 121.

    Article  Google Scholar 

  • Bell D R and Rossman G R 1992 Water in Earth’s mantle – the role of nominally anhydrous minerals; Science 255 1391–1397.

    Article  Google Scholar 

  • Berthelsen A 1953 On the geology of the Rupshu district, northwest Himalaya; Medd. Dansk Geol. Foren. 12 350–414.

    Google Scholar 

  • Bohlen S R and Boettcher A L 1982 The quartz–coesite transformation: A precise determination and effects of other components; J. Geophys. Res. 87 7073–7078.

    Article  Google Scholar 

  • Bolfan-Casanova N 2005 Water in the Earth’s mantle; Mineral. Mag. 69 229–257.

    Article  Google Scholar 

  • Carswell D A 1990 Eclogites and the eclogite facies rocks: Definitions and classification; In: Eclogite facies rocks (ed.) Carswell D A; Blackie Glasgow and London 1 13.

  • Chatterjee N and Jagoutz O 2015 Exhumation of the UHP Tso Morari eclogite as a diapir rising through the mantle wedge; Contrib. Mineral. Petrol. 169 3.

    Article  Google Scholar 

  • Chen D, Liu L and Liu X 2011 Atoll garnet in the Yukahe UHP eclogite: Evidence for melt/fluid activity during the eclogitic facies metamorphism; Mineral. Mag. 75 650.

    Google Scholar 

  • Cheng H, Nakamura E, Kobayashi K and Zhou Z 2007 Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone; Am. Mineral. 92 1119–1129.

    Article  Google Scholar 

  • Chopin C 1984 Coesite and pure pyrope in high-grade-blueschists of the Western Alps: A first record and some consequences; Contrib. Mineral. Petrol. 86 107–118.

  • Colchen M, Mascle G and Delaygue G 1994 Lithostratigraphy and age of the formations in the Tso Morari dome; J. Nepal Geol. Soc. 10 23.

    Google Scholar 

  • Coleman R G, Lee D E, Beatty L B and Brannock W W 1965 Eclogites and eclogites: Their differences and similarities; Geol. Soc. Am. Bull. 76 483–508.

    Article  Google Scholar 

  • Deer W A, Howie R A and Zussman J 1992 An introduction to the rock forming minerals; ELBS Publ., UK, 696p.

    Google Scholar 

  • de Sigoyer J, Chavagnac V, Toft J B, Villa I M, Luais B, Guillot S, Cosca M and Mascle G 2000 Dating the Indian continental subduction and collisional thickening on the NW Himalayas–Multichronology of the Tso Morari eclogites; Geology 28 487–490.

    Article  Google Scholar 

  • de Sigoyer J, Guillot S and Dick P 2004 Exhumation of the ultra high pressure Tso Morari unit in eastern Ladakh NW Himalayas: A case study; Tectonics 23 1–18.

    Article  Google Scholar 

  • de Sigoyer J, Guillot S, Lardeaux J M and Mascle G 1997 Glaucophane bearing eclogites in the Tso Morari dome eastern Ladakh NW Himalaya; Eur. J. Mineral. 9 1073–1083.

    Article  Google Scholar 

  • Ding L, Zhong D L, Yin A, Kapp P and Harrisson T M 2001 Cenezoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa); Earth Planet Sci. Lett. 192 423–438.

    Article  Google Scholar 

  • Di Pietro J A and Pogue K R 2004 Tectonostratigraphic subdivisions of the Himalaya: A view from the west; Tectonics. 23, https://doi.org/10.1029/2003TC001554.

  • Dobbs H T, Peruzzo L, Seno F, Spiess R and Prior D J 2003 Unraveling the Schneeberg garnet puzzle. A numerical model of multiple nucleation and coalescence; Contrib. Mineral. Petrol. 146 1–9.

    Article  Google Scholar 

  • Donaldson D, Webb A A G, Menold C A, Kylander-Clark A R C and Hacker B R 2013 Petrochronology of Himalayan ultrahigh–pressure eclogite; Geology 41 835–838.

    Article  Google Scholar 

  • Ellis D J and Green D H 1979 An experimental study of the effect of Ca upon garnet–clinopyroxene Fe–Mg exchange equilibria; Contrib. Mineral. Petrol. 71 12–22.

    Article  Google Scholar 

  • Epard J L and Steck A 2008 Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya; Tectonophys. 451 242–264.

    Article  Google Scholar 

  • Evans B W 1990 Phase relations of epidote blueschists; Lithos 25 3–23.

    Article  Google Scholar 

  • Faryad S W, Klápová H and Nosál L 2010 Mechanism of formation of atoll garnet during high-pressure metamorphism; Mineral. Mag. 74 111–126.

    Article  Google Scholar 

  • Faryad S W and Hoinkes G 2004 Complex growth textures in a polymetamorphic metabasite from the Kraubath Massif Eastern Alps; J. Petrol. 45 1441–1451.

    Article  Google Scholar 

  • Florence F P and Spear F S 1991 Effects of diffusional modification of garnet growth zoning on P–T path calculations; Contrib. Mineral. Petrol. 107 487–500.

    Article  Google Scholar 

  • Forestier F H and Lasnier B 1969 Découverte de niveaux d’amphibolites à pargasite anorthite corindon et saphirine dans les schistes cristallins de la vallée du Haut–Allier – Existence du faciès granulite dans la massif central Français; Contrib. Mineral. Petrol. 23 194–235.

    Article  Google Scholar 

  • Fumagalli P and Poli S 2005 Experimentally determined phase relations in hydrous peridotites to 65 GPa and their consequences on the dynamics of subduction zones; J. Petrol. 463 555–578.

    Google Scholar 

  • Ghent E D 1989 A review of chemical zoning in eclogite garnets; In: Eclogites and Eclogite–Facies Rocks (ed.) Smith D C, Elsevier Sci. Publ., pp. 207–235.

  • Gillet P Ingrin J and Chopin C 1984 Coesite in subducted continental crust: P–T history deduced from an elastic model; EPSL 70 426–436.

    Article  Google Scholar 

  • Green J F N 1915 The garnets and streaky rocks of the English Lake District; Mineral. Mag. 17 207–217.

    Article  Google Scholar 

  • Green T H and Hellman P L 1982 Fe–Mg partition between coexisting garnet and phengite at high pressure and comments on a garnet phengite geothermometer; Lithos 15 253–266.

    Article  Google Scholar 

  • Griffin W L and Brueckner H K 1980 Caledonian Sm–Nd ages and a crustal origin for Norwegian eclogites; Nature 285 319–321.

    Article  Google Scholar 

  • Griffin W L and Carswell D A 1985 In situ metamorphism of Norwegian eclogites: An example; In: The Caledonide Orogen (eds) Gee D G and Sturt B A, Wiley New York, pp. 813–822.

    Google Scholar 

  • Griffin W L and Qvakem H 1985 Superferrian eclogites and the crustal origin of garnet peridotites Almklovdalen Norway; In: The Caledonide Orogen (eds) Gee D G and Sturt B A, Wiley New York, pp. 804–812.

    Google Scholar 

  • Guillot S, de Sigoyer J, Lardeaux J M and Mascle G 1997 Eclogitic metasediments from the Tso Morari area Ladakh Himalaya: Evidence for continental subduction during India–Asia convergence; Contrib. Mineral. Petrol. 128 197–212.

    Article  Google Scholar 

  • Guillot S, Hattori K, de Sigoyer J, Nägler T and Auzende A L 2001 Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites; EPSL 193 115–127.

    Article  Google Scholar 

  • Guillot S, Garzanti E, Baratoux D, Marquer D, Maheo G and de Sigoyer J 2003 Reconstructing the total shortening history of the NW Himalaya; Geochem. Geophys. Geosyst. 4, https://doi.org/10.1029/2002GC000484.

  • Guillot S, Mahéo G, de Sigoyer J, Hattori K H and Pêcher A 2008 Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks; Tectonophys. 451 225–241.

    Article  Google Scholar 

  • Hames W E and Menard T 1993 Fluid-assisted modification of Garnet composition along rims cracks and mineral inclusion boundaries in samples of amphibolite facies schists; Am. Mineral. 78 338–344.

    Google Scholar 

  • Hickmott D D, Shimizu N, Spear F S and Selverstone J 1987 Trace-element zoning in a metamorphic garnet; Geology 15 573–576.

    Article  Google Scholar 

  • Hirsch D M, Prior D J and Carlson W D 2003 An overgrowth model to explain multiple dispersed high-Mn regions in the cores of garnet porphyroblasts; Am. Mineral. 88 131–141.

    Article  Google Scholar 

  • Holland J B 1980 The reaction albite = jadeite + quartz determined experimentally in the range 600\(^{\circ }\)C–1200\(^{\circ }\)C; Am. Mineral. 65 129–134.

    Google Scholar 

  • Holland J B 1983 The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes; Contrib. Mineral. Petrol. 82 214–220.

    Article  Google Scholar 

  • Holland T J B and Powell R 1990 An enlarged and updated internally consistent thermodynamic data set with uncertainties and correlations: The system K2O-Na2O-CaOMgO-FeO-MnO-Fe2O3-TiO2-SiO2-C-H2-O2; J. Metamorph. Geol. 8 89–124.

    Article  Google Scholar 

  • Hollister L S 1966 Garnet zoning: An interpretation based on the Rayleigh fractionation model; Science 154 1647–1651.

    Article  Google Scholar 

  • Hwang S L, Shen P, Yui T F and Chu H T 2003 On the mechanism of resorption zoning in metamorphic garnet; J. Meta. Geol. 21 761–769.

    Article  Google Scholar 

  • Ingrin J and Skogby H 2000 Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications; Eur. J. Mineral. 12 543–570.

    Article  Google Scholar 

  • Jain A K, Singh S, Manickavasagam R M, Josh M and Verma P K 2003 HIMPROBE programme: Integrated studies on geology petrology geochronology and geophysics of the trans-Himalaya and Karakoram; Geol. Soc. India Memoir 53 56p.

    Google Scholar 

  • Joesten R 1991 Grain boundary diffusion kinetics in silicate and oxide minerals; In: Diffusion, Atomic Ordering and Mass Transport; Springer Berlin, pp. 345–395.

  • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman H U, Kausar A B and Shiraishi K 2003 Timing of Himalayan ultra high pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia; J. Meta. Geol. 21 589–599.

    Article  Google Scholar 

  • Kayleigh H M, Dennis D, Carrie M A, Webb A and Alexander G 2014 Pressure–temperature–time constraints for UHP Tso Morari eclogite NW India; GSA Annual Meeting in Vancouver, British Columbia.

  • Kohn M J 2003 Geochemical zoning in metamorphic minerals in the crust; Treatise on Geochemistry, Amsterdam Elsevier 3 229–261.

    Article  Google Scholar 

  • Kohn M and Spear F S 2000 Retrograde net transfer reaction insurance for pressure–temperature estimates; Geology 28 1127–1130.

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien P J and Heidelbach F 2007 Compositional re-equilibration of garnet: The importance of sub-grain boundaries; Eur. J. Mineral. 19 431–438.

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien P-J, de Capitani C and Carswell D A 2008 Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition; Lithos 103 309–332.

    Article  Google Scholar 

  • Krogh E 1988 The garnet–clinopyroxene iron–magnesium geothermometer – a reinterpretation of existing experimental data, Contrib. Mineral. Petrol. 99 44–48.

    Article  Google Scholar 

  • Lanari P, Riel N, Guillot S, Vidal O, Schwartz O, Pêcher A and Hattori K H 2013 Deciphering high-pressure metamorphism in collisional context using microprobe-map** methods: Application to the Stakeclogitic massif NW-Himalaya; Geology 41 111–114.

    Article  Google Scholar 

  • Lappin M A and Smith D C 1978 Mantle-equilibrated orthopyroxene eclogite pods from the basal gneisses in the Selje district western Norway; J. Petrol. 19 530–584.

    Article  Google Scholar 

  • Lasaga A C, Richardson S M and Holland H D 1977 The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism; In: Energetics of geological processes (eds) Saxena S K and Bhatacharji S, Springer Verlag, New York, pp. 353–388.

    Chapter  Google Scholar 

  • Lasaga A C 1983 Geo-speedometry: An extension of geothermometry; In: Kinetics and Equilibrium in Mineral Reactions (ed.) Saxena S K, Springer Verlag, New York, 3 81–114.

  • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Howthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J and Mandarino J A 1997 Nomenclature of amphiboles report of the subcommittee on amphiboles of the International Mineralogical Association: Commission on new mineral names; Mineral. Mag. 61 295–321.

    Article  Google Scholar 

  • Leech M L, Singh S, Jain A K and Manickavasagam R M 2003 New U–Pb shrimp ages for the UHP Tso Morari Crystallines Ladakh India; The Geological Society of America (GSA) Annual Meeting, Seattle, USA, abs No: 61682 260–264.

    Google Scholar 

  • Leech M L, Singh S, Jain A K, Klemperer S L and Manickavasagam R M 2005 The onset of India–Asia continental collision: Early steep subduction required by the timing of UHP metamorphism in W Himalaya; EPSL 234 83–97.

    Article  Google Scholar 

  • Li X P, Zheng Y F, Wu Y B, Chen F K, Gong B and Li Y L 2004 Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating; Contrib. Mineral. Petrol. 148 443–470.

    Article  Google Scholar 

  • Loomis T P 1975 Reaction zoning of garnet; Contrib. Mineral. Petrol. 52 285–305.

    Article  Google Scholar 

  • Lu R and Keppler H 1997 Water solubility in pyrope to 100 kbar; Contrib. Mineral. Petrol. 129 35–42.

    Article  Google Scholar 

  • Mahéo G, Bertrand H, Guillot S, Villa I M, Kellerc F and Capiez P 2004 The south Ladakh ophiolites (NW Himalaya India): An intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys; Chem. Geol. 203 273–303.

    Article  Google Scholar 

  • Menard T and Spear F S 1993 Metamorphism of calcic pelitic schists Strafford Dome Vermont: Compositional zoning and reaction history; J. Petrol. 34 977–1005.

    Article  Google Scholar 

  • Mierdel K and Keppler H 2004 The temperature dependence of water solubility in enstatite; Contrib. Mineral. Petrol. 148 305–311.

    Article  Google Scholar 

  • Miller J A, Buick I S, Cartwright I and Barnicoat A 2002 Fluid processes during the exhumation of high-P metamorphic belts; Mineral. Mag. 66 93–119.

    Article  Google Scholar 

  • Mirwald P W and Massonne H J 1980 Quartz coesite transition and the comparative friction measurements in piston-cylinder apparatus using talc–alsimag-glass (TAG) and NaCl high pressure cell: A discussion; J. Mineral. Geochem. 10 469–477.

  • Morimoto N 1988 Nomenclature of Pyroxenes; Am. Mineral. 73 1123–1133.

    Google Scholar 

  • Mosenfelder J L 2000 Pressure dependence of hydroxyl solubility in coesite; Phys. Chem. Min. 27 610–617.

    Article  Google Scholar 

  • Mottana A, Carswell D A, Chopin C and Oberhansi R 1990 Eclogite facies mineral parageneses; In: Eclogite facies mineral parageneses (ed.) Carswell D A, Blackie (Glasgow and London), pp. 14–52.

  • Mukherjee B K and Sachan H K 2001 Discovery of coesite from Indian Himalaya: A record of ultrahigh pressure metamorphism in Indian continental crust; Curr. Sci. 81 1358–1361.

    Google Scholar 

  • Mukherjee B K and Sachan H K 2009 Fluids in coesite-bearing rocks of the Tso Morari Complex NW Himalaya: Evidence for entrapment during peak metamorphism and subsequent uplift; Geol. Mag. 146 876–889.

    Article  Google Scholar 

  • Mukherjee B K, Sachan H K, Ogasawaray Y, Muko A and Yoshioka N 2003 Carbonate-bearing UHPM rocks from the Tso–Morari Region Ladakh India: Petrological implications; Int. Geol. Rev. 45 49–69.

    Article  Google Scholar 

  • Mukherjee S and Mulchrone K F 2012 Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome Indian western Himalayas; Int. J. Earth Sci. 101 1929–1947.

    Google Scholar 

  • Newton R C and Smith J V 1966 Investigations concerning the breakdown of albite at depth in the earth; J. Geol. 75 268–286.

  • O’Brien P J and Sachan H K 2000 Diffusion modeling in garnet from the Tso-Morari eclogite and implications for exhumation models; 15th HKT workshop Chengdu China Earth Sci. Frontiers, China Univ. Sci. 7 25–27.

  • O’Brien P J, Zotov N, Law R, Khan M A and Jan M Q 2001 Coesite in Himalyan eclogite and implications for models of India–Asia collision; Geology 29 435–438.

    Article  Google Scholar 

  • Palin R M, St-Onge M R, Waters D J, Searle M P and Dyck B 2014 Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: Constraining the P-T-M (\(\text{ H }_{2}\)O) conditions of exhumation; J. Meta. Geol. 32 675–693.

    Article  Google Scholar 

  • Palin R M, Reuber G S, White R W, Kaus B J P and Weller O M 2017 Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach; EPSL 467 108–119, https://doi.org/10.1016/j.epsl.2017.03.029.

  • Parrish R R, Gough S J, Searle M P and Waters D J 2006 Plate velocity exhumation of UHP eclogites in the Pakistan Himalayas; Geology 34 989–992.

    Article  Google Scholar 

  • Passchier C W and Trouw R A J 1998 Microtectonics; Springer Berlin, 289p.

    Book  Google Scholar 

  • Pattison D R M and Newton R C 1989 Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer; Contrib. Mineral. Petrol. 101 87–103.

    Article  Google Scholar 

  • Peacock S M 1993 The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust; Geol. Soc. Am. Bull. 105 684–694.

    Article  Google Scholar 

  • Perchuk A, Philippot P, Erdmer P and Fialin M 1999 Rates of thermal equilibration at the onset of subduction deduced from diffusion modeling of eclogitic garnets Yukon–Tanana terrane Canada; Geology 27 531–534.

    Article  Google Scholar 

  • Poli S and Schmidt M W 1995 \(\text{ H }_{2}\)O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems; J. Geophys. Res. 100 22,299–22,314.

    Article  Google Scholar 

  • Poli S and Schmidt M W 1997 The high-pressure stability of hydrous phases in orogenic belts: An experimental approach to eclogite forming processes; Tectonophys. 273 169–184.

    Article  Google Scholar 

  • Rast N 1965 Nucleation and growth of metamorphic minerals; Controls of Metamorphism, Edinburgh, pp. 73–102.

  • Ravna E J K 2000 The garnet-clinopyroxene \(\text{ Fe }^{2+}\)–Mg geothermometer: An updated calibration; J. Metamorph. Geol. 18 211–219.

  • Ravna E J K and Terry M P 2004 Geothermobarometry of UHP and HP eclogites and schists – an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz; J. Metamorph. Geol.  22(6) 579–592.

    Article  Google Scholar 

  • Ridley J 1984 Evidence of temperature dependent ‘blueschist to eclogite’ transformation in HP metamorphism of metabasic rocks; J. Petrol. 25 852–870.

    Article  Google Scholar 

  • Rossman G R 1996 Studies of OH in nominally anhydrous minerals; Phys. Chem. Min. 23 299–304.

    Article  Google Scholar 

  • Ruiz Cruz M D 2011 Origin of atoll garnet in schists from the Alpujárride Complex Central zone of the Betic Cordillera Spain: Implications on the P–T evolution; Mineral. Petrol. 101 245–261.

    Article  Google Scholar 

  • Sachan H K, Bodnar R J, Islam R and Law R D 1999 Exhumation history of eclogites from the Tso Morari crystalline complex in eastern Ladakh: Mineralogical and fluid inclusion constraints; J. Geol. Soc. India 53 181–190.

    Google Scholar 

  • Sachan H K, Mukherjee B K, Ogasawara Y, Maruyama S, Pandey A A K M, Yoshioka N and Ishida H 2001 Discovery of coesite from Indian Himalaya: Consequences on Himalayan tectonics, paper presented at Ultrahigh-Pressure Minerals (UHPM) Workshop, Waseda Univ., Tokyo, Japan.

  • Sachan H K, Mukherjee B K, Ogasawara Y, Maruyama S, Ishida H, Muko A and Yoshioka N 2004 Discovery of coesite from Indus suture zone ISZ Ladakh India: Evidence for deep subduction; Eur. J. Mineral. 16 235–240.

    Article  Google Scholar 

  • Schlup M, Carter A, Cosca M and Steck A 2003 Exhumation history of eastern Ladakh revealed by \(^{40}\)Ar/\(^{39}\)Ar and fission track ages: The Indus River–Tso Morari transect NW Himalaya; J. Geol. Soc. London 160 385–399.

    Article  Google Scholar 

  • Schmidt M and Poli S 1998 Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation; EPSL 163 361–379.

    Article  Google Scholar 

  • Singh P, Saikia A, Pant N R and Verma P K 2013 Insights into the P-T evolution path of Tso Morari eclogites of the north-western Himalayas: Constraints on the geodynamic evolution of the region; J. Earth Syst. Sci. 122 677–698.

    Article  Google Scholar 

  • Smellie J A T 1974 Formation of atoll garnets from the aureole of the Ardara pluton Donegal Ireland; Mineral Mag. 39 878–888.

    Article  Google Scholar 

  • Smith D C 1980 A tectonic melange of foreign eclogites and ultramafites in the Basal Gneiss Region, West Norway; Nature 287 366–368.

    Article  Google Scholar 

  • Smith D C 1981 A reappraisal of factual and mythical evidence concerning the metamorphic and tectonic evolution of eclogite-bearing terrain in the Caledonides; Terra Cognita 1 73–74.

    Google Scholar 

  • Smith D C 1982 A review of the controversial eclogites in the Caledonides in First International Eclogite Conference; Terra Cognita 2 317.

    Google Scholar 

  • Smith D C 1984 Coesite in clinopyroxene in the Caledonides and its implications for geodynamics; Nature 310 641–644.

    Article  Google Scholar 

  • Smith D C 1988 A review of the peculiar mineralogy of the Norwegian Coesite Eclogite Province; Elsevier Amsterdam 1 206.

    Google Scholar 

  • Smyth J R, Bell D R and Rossman G R 1991 Incorporation of hydroxyl in upper mantle clinopyroxenes; Nature 351 732–734.

    Article  Google Scholar 

  • Spear F S and Selverstone J 1983 Quantitative P–T paths from zoned minerals: Theory and tectonic applications; Contrib. Mineral. Petrol. 83 348–357.

    Article  Google Scholar 

  • Spencer D A, Tonarini S and Pognante U 1995 Geochemical and Sr–Nd isotopic characterization of Higher Himalayan eclogites and associated metabasites; Eur. J. Mineral. 7 89–102.

    Article  Google Scholar 

  • Spiess R, Peruzzo L, Prior D J and Wheeler J 2001 Development of garnet porphyroblasts by multiple nucleation coalescence and boundary driven rotations; J. Metamorph. Geol. 19 269–290.

    Article  Google Scholar 

  • Steck A, Epard J L, Vannay J C, Hunziker J, Girard M, Morard A and Robyr M 1998 Geological transect across the Tso Morari and Spiti areas: The nappe structures of the Tethys Himalaya; Swiss J. Geosci. 91 103–122.

  • St-Onge M R, Rayner N, Palin R M, Searle M and Waters D J 2013 Integrated pressure–temperature–time constraints for the Tso Morari dome, northwest India: Implications for the burial and exhumation path of UHP units in the western Himalaya; J. Metamorph. Geol. 31 469–504.

    Article  Google Scholar 

  • Su W, You Z D, Cong D L, Ye K and Zhong Z Q 2002 Cluster of water molecules ingarnet from ultrahigh-pressure eclogite; Geology 30 611–614.

    Article  Google Scholar 

  • Thakur V C 1983 Deformation and metamorphism of the Tso Morari crystalline complex; In: Geology of the Indus Suture Zone of Ladakh (eds) Thakur V C and Sharma K K, Wadia Institute of Himalayan Geology, Dehradun, India, pp. 1–8.

    Google Scholar 

  • Thompson A B 1992 Water in Earth’s upper mantle; Nature 358 295–302.

    Article  Google Scholar 

  • Tischendorf G 1997 On Li bearing micas: Estimating Li from EPMA and an improved diagram for graphical representation; Mineral. Mag. 61 809–834.

    Article  Google Scholar 

  • Waters D J and Martin H N 1993 Geobarometry in phengite bearing eclogites; Terra Abstract 5 410–411.

    Google Scholar 

  • Whitney D L 1996 Garnets as open systems during regional metamorphism; Geology 24 147–150.

    Article  Google Scholar 

  • Whitney D L 1991 Calcium depletion halos and Fe–Mn–Mg zoning around faceted plagioclase inclusions in garnet from a high-grade pelitic gneiss; Am. Mineral. 76 493–501.

    Google Scholar 

  • Wilke F D H, O’Brien P J, Scmidt A and Ziemann M A 2015 Subduction peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite Tso Morari, western Himalaya; Lithos 231 77–91.

    Article  Google Scholar 

  • Wilke F D H, O’Brien P J, Gerdes A, Timmerman M J, Sudo M and Khan A 2010 The multistage exhumation history of the Kaghan Valley UHP series NW Himalaya Pakistan from U–Pb and \(^{40}\)Ar/\(^{39}\)Ar ages; Eur. J. Mineral. 22 703–719.

    Article  Google Scholar 

  • Williamson W C 1935 The composite gneiss and contaminated granodiorite of Glenn Shee Perthshire; Quart. J. Geol. Soc. London 91 382–419.

    Article  Google Scholar 

  • Withers A C, Wood B J and Carroll M R 1998 The OH content of pyrope at high pressure; Chem. Geol. 147 161–171.

    Article  Google Scholar 

  • **ao Y, Hoefs J, van den Kerkhof A M, Fiebig J and Zheng Y 2000 Fluid history of UHP metamorphism in Dabie Shan China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling; Contrib. Mineral. Petrol. 139 1–16.

    Article  Google Scholar 

  • **ao Y L, Hoefs J, van den Kerkhof A M and Li S G 2001 Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from the North Dabie Shan China; J. Metamorph. Geol. 19 3–19.

    Article  Google Scholar 

  • Zheng Y F, Fu B, Gong B and Li L 2003 Stable isotope geochemistry of ultra high pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime; Earth Sci. Rev. 62 105–161.

    Google Scholar 

  • Zheng Y F, Fu B, **ao Y, Li Y and Gong B 1999 Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains; Lithos 46 677–693.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Department of Geology, Savitribai Phule Pune University, for providing the necessary facilities. Thanks are also due to Prof. S Y O’Reilly, for providing access to analytical facilities and for constant encouragement. This is contribution from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and in the GEMOC Key Centre (http://www.gemoc.mq.edu.au). The analytical data were obtained using instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS/AuScope, industry partners and Macquarie University. MKJ acknowledges the financial support received from CSIR, New Delhi by means of SRF (9/137/(0499)/2011-EMR-I). The authors thank BCUD, Savitribai Phule Pune University for financial support received through BCUD research project grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin R Karmalkar.

Additional information

Corresponding editor: Pulak Sengupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonnalagadda, M.K., Karmalkar, N.R., Duraiswami, R.A. et al. Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya. J Earth Syst Sci 126, 107 (2017). https://doi.org/10.1007/s12040-017-0887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0887-y

Keywords

Navigation